

The Solid State Imaging Technology

Fairchild CCD Imaging 3440 Hillview Avenue Palo Alto, California 94304 Phone (415) 493-8001 • TWX 910-373-1227

During the '70s, Fairchild led the development of CCD Technology. Since the beginning, the buried-channel concept has been utilized in all CCD products. The product line therefore exhibits all the advantages of buriedchannel technology including low noise, high speed and high density.

1982

Transferring this process from an R & D operation to a volume production environment required extensive efforts in research, design, development and production engineering. Our efforts paid off. Fairchild leads the way in CCD technology.

Fairchild CCD Imaging offers a broad product line. Specifically, we offer line scan sensors with 256 to 2,048 elements of resolution. Our area sensors meet full NTSC resolution requirements with 488 x 380 elements of resolution. We also offer both linescan and area cameras. In addition, we offer signal processing devices including video delay lines.

The '80s is the CCD Decade. And Fairchild is the CCD Leader.

1

The future of imaging and signal processing lies in CCD solid-state technology.

Line-scan and area image sensors, signal processing devices and cameras from Fairchild mean increased performance and a solid future.

Specifically, we have such solid offerings as line-scan sensors with 256 to 2,048 elements of resolution. Area imaging sensors, which meet full NTSC resolution requirements for television. Plus complete camera systems for both line-scan and area sensors. And, in addition, we offer

signal processing devices such as delay lines and filters.

And when it comes to buried channel technology, Fairchild gives you the fastest devices with the lowest noise and the highest dynamic range.

But the bottom line for you is the solid

Sensing the future

performance of solid-state CCD. With a brand-new future opened up for uses in facsimile, optical character recognition (OCR), industrial measurement and control, robotics, automation and many other camera applications.

We know that applications don't stop there. They are as limitless as your imagination. That's why our support group is available to give you solid support with new designs using solid-state CCD technology.

So when it comes to image sensing and signal processing, it makes sense to look to a solid future.

A Fairchild solid-state future. Call (415) 493-8001 for more information. Fairchild CCD

Imaging, 4001 Miranda Ave., Palo Alto, CA 94304. TWX:910-373-1227. A Schlumberger Company

Al-16

CANON LENS

CCD Image Sensing and Signal Processing

France: Fairchild Camera & Instrument SA, 121 Ave. d1laile, 75013 Paris. Tel: 331 564 55 66 Telex: 0042 200614, 1taly: Fairchild Semiconduitori S.P.A. Viale Corsica 7, 20133 Milano. Tel: 02 296001-5. Telex: 482303522. Germany: Fairchild Camera & Instrument (Deutschland) GmbH 2046 Garching Hochsuck, Duminestri 15, Munchen. Tel: 0493 30001. Flex: 52 4801 Iair d. England: Fairchild Camera & Instrument (K) LLA: 20 Hpd SP, Forters Bar, Hertordshalmer 20 Hosh 20 Hoch 20 Hochsung, David Setti Seti

Sec.

TABLE OF CONTENTS

Ι.		4
<i>II</i> .	LINE SCAN SENSORS AND BOARDS	0
	I-SCAN Desian Development Set	25
	CCD122/142	26
	CCD122/142 Design Development Board	42
	CCD133/143	46
	CCD133/143 Design Development Board	62
<i>III</i> .	AREA SENSORS	
	CCD222	67
	CCD222 Illumination Chart	75
	Non-Interlaced CCD222 Scanning	76
	Inree-Field-Per-Frame CCD222 Scanning	//
IV.	SIGNAL PROCESSING DEVICES AND MODULES	
	Signal Processing Products Summary	79
	CCD321A	81
	CCD321M	89
V.	CAMERAS AND ACCESSORIES	
	Commercial Line Scan Camera Summary	96
	Commercial Line Scan Cameras CCD1100/1300/1400	97
	CCD1200/1500 Commercial Line Scan Cameras	112
	Pixel Locator	113
	CCD1000 Industrial Line Scan Camera Series	114
	Industrial Line Scan Cameras CCD1200/1300/1500	115
	CCD3000/4000 Automation Camera Series	119
VI.	ARTICLES AND GRAPHS	
	CCD Fundamentals	121
	Charge Coupled Device Principles	126
	Spectral Response Curves	135
	Illumination Source Spectra	137
	Iecnnical Note on X-Ray Imaging	138
	Note on CCD Line Imaging Devices	141
	Cockpit IV System	146

INTRODUCTION

Line Scan Image Sensors

Basically, a line scan image sensor is composed of a row of image sensing elements (photosites), two analog transport registers, and an output amplifier. Light energy falls on the photosites and generates charge packets proportional to the light intensity. These charge packets are then transferred in parallel to two analog transport registers, which are clocked by 2-phase clocks. The packets are next delivered to an onchip output amplifier where they are converted to proportional voltage levels. A series of pulses, amplitude modulated with the optical information, appear at the output.

The following tables summarize the features of Fairchild's Line Scan Imaging Products. The CCD123, CCD133, CCD142 and CCD143 are second generation image sensors which include additional integrated CCD and MOS circuitry for generation and amplification of clock signals, generation of white and black reference levels for the video output signal, generation of an end-of-scan output, and a video sample-and-hold circuit.

Key advantages of Fairchild CCD line scan sensors, due to Fairchild's Isoplanar buried-channel structure, include high data rates, high charge transfer efficiencies, low noise, and relatively small die sizes.

Line scan sensors find applications ranging from optical character recognition (OCR) using the 256 x 1 device to high speed facsimile sensing using the 1728 x 1 or 2048 x 1. The precise location of the photosites on the sensor allows the device to be used in high precision noncontact measurement applications such as dimensional measurements of objects, shape recognition and sorting, and defect detection. The line scan sensors have the same sensing element center-to-center spacing; selection is determined by the user's resolution requirement.

Ordering Code	Number of Elements	Element Size – Microns	Maximum Data Rate	Dynamic Range (Typical)	Responsivity (Typical)
CCD111DC	256×1	13x17	10MHz	2500:1	0.5V per µj/cm ²
CÇD133DC	1024x1	13x13	20MHz	2500:1	3.0V per µj/cm ²
CCD122DC	1728x1	13x13	2MHz	2500:1	3.5V per µj/cm ²
CCD142DC	2048x1	13x13	2MHz	2500:1	3.5V per µj/cm²
CCD143DC	2048×1	13x13	20MHz	2500:1	3.0V per µj/cm²

Line Scan Sensors

Ordering Code	Sensor Supported	Comments
I -SCAN	CCD111DC	Enirohild offers a parios of printed eizewit
CCD133DB	CCD133DC	boards for use as construction aids for
CCD121HB	CCD122DC	experimental systems using CCD line scan image sensors. These design and
CCD142DB	CCD142DC	development boards are fully assembled
CCD143DB	CCD143DC	and tested, and require only power supplies and an oscilloscope to display
		the video information corresponding to the image positioned in front of the sensor.

Line Scan Design Aids (Only I -SCAN includes sensor)

Area Image Sensors

Area arrays are similar to the line scan sensors except that the photosites are arranged in a matrix format and the opaque transport registers are located between the photosite columns. The charge packets are transferred to the output amplifier in two separate fields, line by line. This technique is called the interline transfer approach.

The following table summarizes the features of Fairchild's Area Imaging Products. The CCD222, 488 x 380 element sensor, when operated at a 7.16 MHz horizontal clock frequency, provides a video output signal which is compatible with NTSC black and white television standards.

The highly precise location of the photosites allows precise identification of each component of the image signal, an important feature for applications requiring exact dimensional measurements. The devices are also well suited for use in video cameras that require low power, small size, high sensitivity and high reliability.

Ordering Code	Number of Elements	Grade	Dynamic Range (Typical)	Responsivity (Typical)	Maximum Frame Rate
*CCD222ADC	488×380	А	1000:1	5V per µj/cm ²	60/s
*CCD222BDC	488×380	В	1000:1	5V per µj/cm ²	60/s
*CCD222CDC	488×380	С	1000:1	5V per µj/cm ²	60/s

Area Sensors *NTSC Compatible

Camera Subsystems

Fairchild CCD camera subsystems are fully assembled and calibrated electro-optical instruments useful in a wide variety of scientific and industrial applications.

Each subsystem is comprised of a camera, a line-powered control unit, and interconnecting cables. The camera, which may be ordered separately, may be equipped with a lens suitable for the application.

Line Scan Camera resolutions of 256, 512, 1024, 1728 and 2048 elements per line are available. Line scan subsystems are particularly useful for acquisition of optical data for objects in motion, i.e., facsimile scanning of documents transported past the camera's field of view or measurement of objects carried past a camera inspection station on a conveyor bell. Typical subsystem applications include microfiche and microfilm scanning, document scanning for mark sensing, facsimile transduction and OCR data acouisition; precision non-contact measurement and inspection, flaw detection, shape analysis, dimensional measurement, color sorting; and for a wide variety of laboratory uses.

Area Cameras are ideally suited for industrial environments. The CCD3000 Video Communications Camera provides standard television output signals for display of highresolution images on low-cost monitors or for digital analysis using NTSC image processing equipment. The CCD4000 Automation Camera provides image data output in a noninterlaced 256 by 256 element square pixel pitch format which can be utilized by a CPU for automatic inspection, recognition and robot guidance. Either camera can be used as a relatively small single-component camera, or be separated into a camera control unit plus a cable-connected sense head which is robust enough to be mounted onto a robot arm.

5

Ordering Code	Number of Elements	Line Scan Rate	Exposure Time	Data Rate
CCD1100C	256x1	60Hz-35kHz	30µs-16ms	100kHz-10MHz
CCD1200C	512x1	60Hz-20kHz	51µs-16ms	100kHz-10MHz
CCD1300C	1024x1	60Hz-10kHz	102µs-16ms	100kHz-10MHz
CCD1400C	1728x1	60Hz- 6kHz	175µs-16ms	100kHz-10MHz
CCD1500C	2048x1	60Hz- 5kHz	204µs-16ms	100kHz-10MHz

Commercial Line Scan Camera Subsystems (Include Camera, Control Unit and Interconnect Cables. Order Lens separately.) Camera only may be ordered.

Ordering Code	Number of Elements	Maximum Line Scan Rate	Minimum Exposure Time	Maximum Data Rate
1200R	512x1	38 kHz	26 µs	20 MHz
1300R	1024x1	19 kHz	52 μs	20 MHz
1500R	2048x1	9.7 kHz	103 µs	20 MHz

Industrial Line Scan Camera Subsystems (Include camera only)

Ordering Code	Scanning Format	Maximum Frame Rate	Comment
CCD3000	NTSC Compatible	60 Hz	488x380 Resolution
CCD4000	256x256	120 Hz	Non-interlaced Output

Area Camera Subsystems

Ordering Code	For Use With	Description		
LENS13C	All	13 mm Lens, Standard C Mount		
LENS25C	All	25 mm Lens, Standard C Mount		
LENS50C	All	50 mm Lens, Standard C Mount		
LENS28B	CCD1500C, CCD1500R	28 mm Lens, Bayonet Mount		
LENS50B CCD1500C, CCD1500R		50 mm Lens, Bayonet Mount		
CNTRLINE Line Scan Cameras		Control Unit with Interconnect Cables		
CABLE All Line Scan Cameras		Interconnect Cables Only		
CABLAUTO	CCD3000, CCD4000	Remote Sense Head Cable		
PWRSPLY	CCD3000, CCD4000	Power Supply		
PIX1100	CCD1100C	Pixel Locator		
PIX1200	CCD1200C	Pixel Locator		
PIX1300	CCD1300C	Pixel Locator		
PIX1400	CCD1400C	Pixel Locator		
PIX1500	CCD1500C	Pixel Locator		

Camera Accessories

.

Signal Processing

The capability to manipulate information in the form of discrete charge packets makes CCD technology ideal for analog signal processing. Fairchild signal processing components are monolithic silicon structures comprised of CCD analog shift registers, charge injection ports, and output charge-sensing amplifiers. They can be advantageously used for delay and temporary storage of analog video signals. The time delay for data transit through the CCD register is precisely controlled by the frequency of the externally supplied transport clock signal. Fairchild signal processing components include a sample-and-hold signal output stage for ease of application.

Fairchild video delay modules are printed circuit board structures which include the CCD321A3 device and are sold as fully assembled and calibrated units. The module is equipped for use as a variable delay circuit, using either an externally supplied or internal variable frequency clock, or for temporary analog data storage in a stopped-clock mode.

Typical applications for the CCD signal processing components and modules include time base correction for video tape recorders, fast input-slow output data expansion systems for A-D converter systems, comb filter realizations, drop-out compensators, and other analog applications up to frequencies of 30 MHz data rate.

Ordering Code	Description
CCD321A1	Broadcast Video Delay Line
CCD321A2	Industrial Video Delay Line
CCD321A3	Time Base Video Delay Line
CCD321A4	Audio Delay Line
CCD321VM	Video Module, Includes the CCD321A3 Device

Signal Processing Products

For further information on Fairchild CCD Imaging and Signal Processing products, call your nearest Fairchild Sales Office, representative, or distributor.

For technical or applications information and assistance, call (415) 493-8001, (TWX 910-373-1227) or write Fairchild CCD Imaging, 3440 Hillview Avenue, Palo Alto, California 94304.

When it comes to precise measurement and improving productivity, there's only one way to go.

CCD semiconductor technology. And when it comes to CCD technology, there's only one leader. Fairchild.

The fact is, we've been the leader in CCD development for over a decade.

That's why we can offer smaller, lighter, more durable solid-state cameras. 1000 Series line-scan cameras for everything from industrial inspection to process control and automation.

Cameras for just about any application you might have that requires high sensitivity and resolution, plus precise measurement with no distortion.

What's behind these highly sensitive CCD cameras? Our CCD line-scan sensors, with 256 to 2.048 elements of resolution.

Not only is there no distortion, our sensors

have fast line rates. High dynamic range. And use very little power.

The way we look at it, they're not only perfect for cameras, but copiers. facsimile machines and page readers as well. Especially when you consider how easily they can be implemented into a system.

So whether you need line-scan cameras or line-scan sensors, call or write your nearest Fairchild sales office, representative or distributor. Or contact us factory-direct. Once you've talked to us, you'll

probably see things in a little different light. Fairchild CCD Imaging, 4001 Miranda

Avenue, Palo Alto, California 94304. Telephone: (415) 493-8001. TWX: 910-373-1227. A Schlumberger Company

CCD 1000 Series line-scan cameras and sensors.

Description

The CCD111 is a monolithic 256-element line image sensor. The device is designed for optical character recognition and other imaging applications that require high sensitivity and high speed. The CCD111 is pin-for-pin compatible with and a functional replacement for the CCD110F.

In addition to a line of 256 sensing elements, the CCD111 chip includes: two charge transfer gates, two 2-phase analog transport shift registers, an output charge detector/amplifier, and a compensation amplifier. The transport registers both feed the input of the charge detector resulting in sequential reading of the 256 sensing elements.

The cell size is 13 μm (0.51 mils) by 17 μm (0.67 mils) on 13 µm (0.51 mils) centers. The device is manufactured using Fairchild advanced charge-coupled device n-channel Isoplanar buried-channel technology.

- DYNAMIC RANGE TYPICAL: 2500:1
- ON-CHIP VIDEO AND COMPENSATION AMPLIFIERS
- LOW POWER REQUIREMENTS
- ALL OPERATING VOLTAGES 15V AND UNDER
- LOW NOISE EQUIVALENT EXPOSURE
- DIMENSIONALLY PRECISE PHOTOSITE SPACING

CCD 111 256-Element Line Scan Image Sensor

CCD Imaging

Connection Diagram

Pin Name	Pin Names:				
PG	Photogate				
ϕ_{XA}, ϕ_{XB}	Transfer Clock				
φ _{1A} , φ _{2A} φ _{1B} , φ _{2B}	Transport Clocks				
OĞ	Output Gate				
os	Output Source				
OD	Output Drain				
CS	Compensation				
	Source				
φ _B	Reset Clock				
RD	Reset Drain				
TP	Test Point				
V _{ss}	Substrate (ground)				

DIP (TOP VIEW)

A Schlumberger Company

CCD111

Functional Description

The CCD111 consists of the following functional elements illustrated in the Block Diagram:

Image Sensor Elements — A row of 256 image sensor elements separated by a dilfused channel stop and covered by a silicon photogate. Image photons pass through the transparent polycrystalline silicon photogate and are absorbed in the single crystal silicon creating hole-electron pairs. The photon generated electrons are accumulated in the photosites. The amount of charge accumulated in each photosite is a linear function of the incident illumination intensity and the integration period. The output signal will vary in an analog manner from a thermally generated background level at zero illumination.

Two Transfer Gates — Gate structures adjacent to the row of image sensor elements. The charge packets accumulated in the image sensor elements are transferred out via the transfer gates to the transport registers whenever the transfer gate voltages go HIGH. Alternate charge packets are transferred to the left and right transport registers. The transfer gates also control the integration time for the sensing elements.

Two 130-Bit Analog Transport Shift Registers — One on each side of the line of image sensor elements and are separated from it by a transfer gate. The two registers, called the transport registers, are used to move the light generated charge packets delivered by the transfer gates serially to the charge detector/amplifier. The complementary phase relationship of the last elements of the two transport registers provides for alternate delivery of charge packets to establish the original serial sequence of the line of video in the output circuit.

A Gated Charge Detector/Amplifier — Charge packets are transported to a precharged diode whose potential charges linearly in response to the quantity of the signal charge delivered. This potential is applied to the gate of the output n-channel MOS transistor producing a signal at the output OS. A reset transistor is driven by the reset clock ($\phi_{\rm p}$) and recharges the charge detector diode capacitance before the arrival of each new signal charge packet from the transport registers.

Definition of Terms

Charge-Coupled Device — A charge-coupled device is a semiconductor device in which finite isolated charge packets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The charge packets are minority carriers with respect to the semiconductor substrate.

Transfer Clocks ϕ_{XA} , ϕ_{XB} — The voltage waveforms applied to the transfer gates to move the accumulated charge from the image sensor elements to the CCD transport registers.

Transport Clocks ϕ_{1A} , ϕ_{2A} , ϕ_{1B} , ϕ_{2B} — The two sets of 2-phase waveforms applied to the gates of the transport registers to move the charge packets received from the image sensor elements to the gated charge detector/amplifier.

Gated Charge Detector/Amplifier — The output circuit of the CCD111 that receives the charge packets from the transport registers and provides a signal voltage proportional to the size of each charge packet received. Before each new charge packet is sensed, a reset clock returns the charge detector voltage to a fixed level.

Reset Clock ϕ_{R} — The voltage waveform required to reset the voltage on the charge detector.

Dynamic Range — The saturation exposure divided by the rms noise equivalent exposure. (This does not take into account dark signal components.) Dynamic range is sometimes defined in terms of peak-to-peak noise. To compare the two definitions a factor of four to six is generally appropriate in that peak-to-peak noise is approximately equal to four to six times rms noise.

RMS Noise Equivalent Exposure — The exposure level that gives an output signal equal to the rms noise level at the output in the dark.

Saturation Exposure — The minimum exposure level that will produce a saturation output signal. Exposure is equal to the light intensity times the photosite integration time.

Charge Transfer Efficiency — Percentage of valid charge information that is transferred between each successive stage of the transport registers.

Spectral Response Range — The spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Responsivity — The output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure.

Total Photoresponse Non-uniformity — The difference of the response levels of the most and the least sensitive

CCD111

element under uniform illumination. Measurement of PRNU excludes first and last elements. (See accompanying photos for details of definition.)

Dark Signal — The output signal in the dark caused by thermally generated electrons that is a linear function of the integration time and highly sensitive to temperature. (See accompanying photos for details of definition.)

Saturation Output Voltage — The maximum useable signal output voltage. Charge transfer efficiency decreases sharply when the saturation ouput voltage is exceeded.

Integration Time — The time interval between the falling edges of any two transfer pulses ϕ_{XB} or ϕ_{XB} as shown in the timing diagram. The integration time is the time allowed for the photosites to collect charge.

Pixel — A picture element (photosite).

Peripheral Response — The output signal caused by lightgenerated charge that is collected by the transport registers (instead of the photosites). The device is covered, except over the photosites, by a gapped metal layer, which functions both as an array of interconnections and as a reflective light shield. The major component of Peripheral Response for visible light ($\lambda \leq 700$ nm) is generated in the transport registers by light transmitted through these gaps in the metal above the registers. For near-infrared light ($\lambda \geq 700$ nm), especially on CCD111A devices, a portion of the charge generated by light absorbed under the photosites and one transport register is collected in the opposite transport register.

Major Differences Between the CCD111A and CCD111B Both the CCD111A and the CCD111B have the same responsivity to visible light (400-700nm). The principal

DC Characteristics: T_c = 25°C (Note 1)

differences are as follows:

The CCD111A is intended for use in applications where very low dark signal and high responsivity to very near-infrared (700-900nm) light are needed, and where peripheral response is not critical.

The CCD111B is selected for use in applications where standard responsivity to very near-infrared (700-900nm) light and standard dark signal are acceptable and where peripheral response needs to be minimized.

It is not recommended that either part be used with illumination containing wavelengths greater than 900nm (near-infrared). If use of such a light source (unfiltered tungsten, for example) is unavoidable, the CCD11B will generally provide the user with more satisfactory results. The table on performance characteristics provides more information.

Absolute Maximum Ratings

– 25°C to 100°C – 25°C to 55°C
– 0.3V to 15V
- 0.3V to 18V
output, no voltage applied
OV

Caution Note

This device has limited built-in gate protection. It is recommended that static discharge be controlled and minimized. Care must be taken to avoid shorting pins OS and CS to V_{SS} or V_{OD} during operation of the device. Shorting these pins temporarily to V_{SS} or V_{OD} may destroy the output amplifiers.

		Limits			1	
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
V _{OD}	Output Transistor Drain Voltage	14.5	15.0	15.5	v	
V _{RD}	Reset Transistor Drain Voltage	11.5	12.0	12.5	v	
V _{OG}	Output Gate Voltage		5.0		v	
V _{PG}	Photogate Voltage	9.5	10.0	12.5	v	
TP1, TP3	Test Points		0.0		v	
TP2, TP4	Test Points	14.5	15.0	15.5	v	

A Schlumberger Company

CCD111

Clock Characteristics: $T_c = 25^{\circ}C$ (Note 1)

			Limits			
Symbol	Characteristic	Min	Тур	Max	Unit	Condition
$f V_{\phi 1AL}, f V_{\phi 1BL} \ f V_{\phi 2AL}, f V_{\phi 2BL}$	Transport Clocks LOW	0.0	0.5	0.8	v	Note 2
$f V_{\phi1AH},f V_{\phi1BH},f V_{\phi2BH}$ $f V_{\phi2BH}$	Transport Clocks HIGH	7.5	8.0	8.5	v	Note 5
$V_{\phi XAL}, V_{\phi XBL}$	Transfer Clock LOW	0.0	0.5	0.8	v	Notes 2, 5
$V_{\phi XAH}, V_{\phi XBH}$	Transfer Clock HIGH	7.5	8.0	8.5	v	Note 5
$V_{\phi RL}$	Reset Clock LOW	0.0	0.5	0.8	v	Notes 2, 5
V _{¢RH}	Reset Clock HIGH	7.5	8.0	8.5	v	Notes 3, 5
$f_{\phi 1A}, f_{\phi 1B}$ $f_{\phi 2A}, f_{\phi 2B}$	Maximum Transport Clock Frequency		5.0		MHz	Note 5
f _{¢R}	Maximum Reset Clock Frequency (Output Data Rate)		10.0		MHz	Note 6

AC Characteristics: T_c = 25°C, f_{eR} = 1.0 MHz, t_{int} = 320 µs, t_{transport} = 259 µs, Light Source = 2854°K + filters as specified. All operating voltages nominal specified values. (Note 1)

			Range			
Symbol	Parameter	Min	Тур	Max	Unit	Condition
DR	Dynamic Range (relative to rms noise) (relative to peak-to-peak noise)	1250:1 250:1	2500:1 500:1			Note 7
NEE	RMS Noise Equivalent Exposure		2 × 10⁻⁴		μJ/cm²	
SE	Saturation Exposure		0.5		µJ/cm²	
CTE	Charge Transfer Efficiency		99.995		%	Note 8
SR	Spectral Response Range Limits		0.45 – 1.05		μm	
Р	Power Dissipation		100		mW	$V_{OD} = 15V$
z	Output Impedance		1000		Ω	
N	RMS Noise Peak-to-Peak Noise		80 400		μV	

CCD111

		Range							
		C	CD111	A	С	CD111	В		
Symbol	Characteristic	Min	Тур	Max	Min	Тур	Max	Unit	Condition
PRNU	Photoresponse Non-uniformity Peak-to-Peak 2854°K + 700 nm cutoff filter		35	70		25	70	mV	14, 15, 16
	2854°K + 900 nm cutoff filter		45	110		45	110	mV	14, 15, 16
	2854°K unfiltered		70			60		mV	14, 15, 16
	Single-pixel Positive Pulses		< 10			<10		mV	15, 16
	Single-pixel Negative Pulses		20	60		20	60	mV	15, 16
RI	Register Imbalance ('Odd'/'Even')		<5			<5		mV	15, 16
DS	Dark Signal DC Component	0	<1	3.	0	2	15	mV	2, 9, 10
	Low Frequency Component	0	<1	2	0	2	10	mV	2, 9, 11
SPDSNU	Single-pixel DS Non-uniformity	0	<1	2	0	1	2	mV	9, 11, 12
PR	Peripheral Response 2854°K + 700 nm cutoff filter		10	17		<2	5	% of V _{OUT}	14
	2854°K + 900 nm cutoff filter		12	20		3	7	% of V _{OUT}	14
	2854°K unfiltered		25			4		% of V _{OUT}	14
R	Responsivity 2854°K + 700 nm cutoff filter	0.7	1.3	2.1	0.5	1.1	2.0	VlµJ/cm ²	13, 14
	2854°K + 900 nm cutoff filter	1.3	2.4	3.9	0.8	1.6	2.4	V/µJ/cm ²	13, 14
	2854°K unfiltered		2.0			0.9		VlµJ/cm ²	13, 14
V _{SAT}	Saturation Output Voltage	500	900		500	900		mV	17

 $\begin{array}{l} \mbox{Performance Characteristics: T_c = 25^{\circ}C$, $f_{\phi R}$ = 1.0 MHz$, t_{int} = 320\mu s$, $t_{transport}$ = 259\mu s$, Light Source = 2854^{\circ}K$ + filters as specified. All operating voltages nominal specified values. (Note 1) \\ \end{array}$

Notes

Tc is defined as the package temperature, measured on the back surface of the ceramic body. 1.

Negative transients on any clock pin going below 0.0V may cause charge injection that results in an increase in the apparent Dark Signal. 2. Negative transmission for any older by in going below dow may cause charge interction that results in any Vo_{BH} should track V_{BD}. The data output frequency f_{ob} is twice that of each transport clock (f_{o1}, f_{o1}, f_{o1}, f_{o2}, f_{o2}). C_{XX} = C_{XX} = 20pF, C_{X1} = C₂₂ = 2opF, C₂₂ = 2opF, C₂₃ = 2opF, C₃₄ = 5pF. Minimum reset clock frequency is limited by the increase in Dark Signal. Dynamic Range is defined as "V_{SAT}/mest (emporal) Noise" or "V_{SAT}/Peak-to-Peak (temporal) Noise." CFE is measured for a one-stage transfer. З.

4.

5.

6.

7.

8.

See photographs for Dark Signal definitions 9.

10. DC and low-frequency Dark Signal components approximately double for every 5°C increase in T_C. The shift register component is also Inversely proportional to f_{or}. Single-pixel Dark Signal non-uniformity (SPDSNU) approximately doubles for every 8°C increase in T_C. They are also directly proportional to

11.

12.

the integration time 1_{int}: Each SPOSNU is measured from the DS level adjacent to the base of the SPDSNU. RESPONSIVITY is defined as the "volts of video output" per "Incident Radiant Energy measured over the 350 nm-1200 nm band." The device will not respond to infrared wavelengths longer than = 1200 nm. However, 2/3 of the radiant energy from a 2854*K source is at $\lambda > 1200$ nm. 13. For the unfiltered 2854°K source, the responsivity values for light measured over 0 < λ < ∞ will be ~0.3X of the responsivity values for light measured over 350 nm $<\lambda$ < 1200 nm.

CCD111

Notes (cont'd)

- OPTICAL FILTERS: a "700 nm cutoff" filter is realized by using one "Wide Band Hot Mirror" (Optical Coating Labs, Inc., Santa Rosa, 14 California) and one 2.0 mm thick "BG-38" blue glass (Schott Optical Glass, Duryea, Pennsylvania) filter in series. The "900 nm cutoff" filter is available on special order; consult Fairchild CCD Applications Engineering for details. Transmittance curves for the two cutoff filters and Spectral Energy Distribution curves for these filters with a 2854 K light source are given in the "Typical Performance Curves" section of this data sheet. It should be noted that the "2854 K + 700 nm cutoff" source is a good approximation to a Davijght Fluorescent bulb. All PRNU measurements taken at a 350mV output level using a FF.50 iens; all PRNU measurements exclude the outputs from the first and last
- 15. photoelements of the array. The "I" number is defined as the distance from the lens to the array divided by the diameter of the lens aperture. As I number increases, the resulting more highly collimated light causing photosite blemishes to dominate PRNU. A lower f number (I SS) results in less collimated light, causing photosite blemishes to dominate PRNU. See photographs for PRNU definitions. See the load configuration.
- 16.
- 17.

Test Load Configuration

clearer photos.)

CCD111

Device Care and Operation

Charge Injection: Every input pin has a gate protection structure that includes a diode from the input to the (grounded) substrate V_{SS} . The diode is reverse-biased during normal operation ($V_{in} > V_{SS}$). Negative (transient) input voltages ($V_{in} < V_{SS}$) will forward-bias the diode, injecting electrons into the bulk silicon of the CCD chip.

If sufficient charge is injected, it will accumulate in the transport register(s) and/or the photosites near the injecting gate protection structure(s). Injected charge which accumulates in the photosites will typically result in an apparent bell-shaped increase in Dark Signal (≈ 20.200 pixels wide) near the injecting gate protection structure. Injected charge which accumulates in a transport register will result in an apparent uniform increase in that register's low frequency dark signal, creating a noticeable increase in the apparent Register Imbalance ("odd/even") of the Dark Signal.

The susceptibility to charge injection sufficient to increase the DC and Low Frequency Dark Signal varies significantly from device to device. It is not possible to select devices with "low" susceptibility. However, devices with low Dark Signal are typically more susceptible than devices with high Dark Signal.

Sufficient charge to appear as increased DC and Low Frequency Dark Signal may be injected by negative transient voltages <4 ns long. Since these transients

cannot be detected by oscilloscopes with less than 250-500 MHz bandwidth, a system which appears to be free from negative transients on a 200 MHz scope may still be prone to charge injection. The recommended method to eliminate charge injection is the following diode clipper circuit:

It is also important to note in design and applications considerations that the devices are very sensitive to thermal conditions. The DC and Low Frequency Dark Signal approximately doubles for every 5°C temperature increase and Dark Signal Non-Uniformities approximately double for every 8°C increase. The devices may be cooled to achieve very long integration times and very low light level capability.

Glass may be cleaned by saturating a cotton swab in alcohol and lightly wiping the surface. Rinse off the alcohol with deionized water. Allow the glass to dry, preferably by blowing with filtered dry N₂ or air.

Typical Performance Curves

Circuit Diagram

•

CCD111

Order Information

It is important to note that two different selections of the CCD111 are being offered for applications that differ in the wavelength of light used for imaging. Please refer to the section "Major Differences Between the CCD111A and CCD111B" on page 3 before placing an order.

To order the CCD111, please follow the ordering codes listed in the table below:

Description	Device Type Order Code
CCD111A 256 x 1 Line Image Sensor	CD111ADC
CCD111B 256 x 1 Line Image Sensor	CD111BDC

A printed circuit board is available which includes all the necessary clocks, logic drivers, and video amplifiers to operate the CCD111. The board is fully assembled and tested and requires ±15V and +5V supplies for operation. The printed circuit board order code is: CCD111DB.

For further information on the boards, please call your nearest Fairchild Sales Office. For technical assistance, call (415) 493-8001.

CCD111DC Package Outline

18-Pin Dual In-Line Ceramic Package

NOTES:

NOTES: All dimensions in Inches (bold) and millimeters (parentheses). Header is black ceramic ($A_1 \ge 0_2$). Glass window is attached to header with epoxy coment. Photosite #1 is located towards the notched end of the package. Terminal #0 is electronically connected to the Substrate (V_{SS}).

DESIGN DEVELOPMENT SET

The I-SCAN design development set is being specially offered by Fairchild as a low cost tool with which to gain understanding of chargecoupled devices principles. The set includes a Fairchild CCD111, 256 element line scan sensor, mounted on a printed circuit card that contains all the necessary CCD111 operating electronics.

I-SCAN is intended for use as a construction aid for experimental systems using CCD line scan sensors or can be incorporated directly into systems requiring 256 elements of resolution.

I-SCAN comes fully assembled and tested and requires only the input of power supplies and an oscilloscope to display the video information corresponding to the image placed in front of the sensor.

The I-SCAN printed circuit card (block diagram) includes a variable frequency clock generator that can be overriden by an external input, logic circuitry for timing the drive signals, drivers to interface the TTL logic to CCD levels and video buffer circuits.

Detailed schematics, a parts layout drawing and timing diagram are included with I-SCAN.

PRICE: \$99

To order I-SCAN, follow the order code below:

Description	Order Code
I-SCAN 256-Element Line Scan Design Development Set	I-SCAN

CCD Imaging "Sensing the Future" For further information on I-SCAN, call your nearest Fairchild sales office, representative or distributor. For engineering assistance call (415) 493-8001 (TWX 910-373-1227) or write Fairchild CCD Imaging, 4001 Miranda Ave., Palo Alto, CA 94304.

CCD122/142

1728/2048-ELEMENT LINEAR IMAGE SENSOR FAIRCHILD CHARGE COUPLED DEVICE

GENERAL DESCRIPTION—The CCD122 and CCD142 are monolithic 1728 and 2048-element line image sensors, respectively. The devices are designed for page scanning applications including facsimile, optical character recognition and other imaging applications which require high resolution and high sensitivity.

The 1728 sensing elements of the CCD122 provide a 200-line per inch resolution across an 8-1/2 inch page adopted as an international facsimile standard. The 2048 sensing elements of the CCD142 provide an 8-line per millimeter resolution across a 256 millimeter page adopted as the Japanese facsimile standard.

The CCD122 and the CCD142 have overall improved performance compared with the CCD121H including higher sensitivity, an enhanced blue response and a lower dark signal. The devices also incorporate on-chip clock driver circuitry.

The photoelement size is 13 μ (0.51 mils) by 13 μ (0.51 mils) on 13 μ (0.51 mils) centers. The devices are manufactured using Fairchild advanced charge-coupled device n-channel Isoplanar buried-channel technology.

- ENHANCED SPECTRAL RESPONSE (PARTICULARLY IN THE BLUE REGION)
- LOW DARK SIGNAL
- HIGH RESPONSIVITY
- ON-CHIP CLOCK DRIVERS
- DYNAMIC RANGE TYPICAL: 2500:1
- OVER 1V PEAK-TO-PEAK OUTPUT
- DARK AND WHITE REFERENCES CONTAINED IN A
- SAMPLED-AND-HELD OUTPUT
- SINGLE POWER SUPPLY

PIN NAMES

Vpg	Photogate
φx	Transfer Clock
фт	Transport Clock
VIDEOOUT	Output Amplifier Source
VDD	Output Amplifier Drain
φR	Reset Clock
Vcd	Clock Driver Drain
Vei	Electrical Input Bias
Vī	Analog Transport Shift Register DC Electrode
EOSout	End-of-Scan Output
фѕн	Sample-and-Hold Clock
Vss	Substrate (GND)
NC	No Connection (Do not Ground)

CCD122/142 VS. CCD121H COMPARISON

PARAMETER	CCD122/142	CCD121H
Spectral Response — Blue Overall	4:1 Improvement 2:1 Improvement	
Dark Signal	2:1 Improvement	-
Responsivity	2:1 Improvement	_
On-Chip Clock Drivers	Yes	No
Dark and White References	Yes	No
Single Power Supply	Yes	No

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTIONAL DESCRIPTION—The CCD122/142 consists of the following functional elements illustrated in the Block Diagram:

Image Sensor Elements — A line of 1728/2048 image sensor elements separated by diffused channel stops and covered by a silicon dioxide surface passivation layer. Image photons pass through the transparent silicon dioxide layer and are absorbed in the single crystal silicon creating hole-electron pairs. The photon generated electrons are accumulated in the photosites. The amount of charge accumulated in each photosite is a linear function of the incident illumination intensity and the integration period. The output signal will vary in an analog manner from a thermally generated noise background at zero illumination to a maximum at saturation under bright illumination.

Transfer Gate — Gate structure adjacent to the line of image sensor elements. The chargepackets accumulated in the image sensor elements are transferred out via the transfer gate to the transport registers whenever the transfer gate voltage goes HIGH. Alternate chargepackets are transferred to the analog transport shift registers. The transfer gate also controls the exposure time for the sensing elements and permits entry of charge to the End-Of-Scan (EOS) shift registers creating the end-of-scan waveform.

Four 879/1039-Bit Analog Shift Registers — Two on each side of the line of image sensor elements and separated from it by the transfer gate. The two inside resisters, called the transport shift registers, are used to move the image generated charge-packets delivered by the transfer gate serially to the charge-detector/amplifier. The complementary phase relationship of the last elements of the two transport shift registers provides for alternate delivery of

charge-packets to establish the original serial sequence of the line of video in the output circuit. The outer two registers serve to deliver the end-of-scan waveform and reduce peripheral electron noise in the inner shift registers.

Gated Charge-Detector/Amplifer — Charge-packets are transported to a precharged diode whose potential changes linearly in response to the quantity of the signal charge delivered. This potential is applied to the gate of an n-channel MOS transistor producing a signal which passes through the sample-and-hold gate to the output at VIDEOour. The sample-and-hold gate is a switching MOS transistor in the output amplifier that allows the output to be delivered as a sampled-and-held waveform. A reset transistor is driven by the Reset Clock (ϕ n) and recharges the charge-detector diode capacitance before the arrival of each new signal charge-packet from the transport registers.

Clock Driver Circuitry — Allows the CCD122/142 to be operated using only three external clocks, (1) a Reset Clock signal which controls the integrated output signal amplifier, (2) a square wave Transport Clock which operates at half the reset clock frequency and controls the readout rate of video data from the sensor, and (3) a Transfer Clock pulse which controls exposure time of the sensor. The external clocks should be able to supply TTL level power.

Dark and White Reference Circuitry — Four additional sensing elements at both ends of the 1728/2048 array are covered by opaque metalization. They provide a dark (no illumination) signal reference which is delivered at both ends of the line of video ouptut representing the illuminated 1728/2048 sensor elements (labelled "D" in the block diagram). Also included at one end of the 1728/2048 sense element array is a white signal reference level generator which likewise provides a reference in the output signal (labelled "W" in the block diagram). These reference levels are useful as inputs to external DC restoration and/or automatic gain control circuitry.

DEFINITION OF TERMS:

Charge-Coupled Device — A charge-coupled device is a semiconductor device in which finite isolated charge-packets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The charge-packets are minority carriers with respect to the semiconductor substrate.

Transfer Clock ϕx — The voltage waveform applied to the transfer gate to move the accumulated charge from the image sensor elements to the CCD transport shift registers.

Transport Clock $\phi \tau$ — The clock applied to the gates of the CCD transport shift registers to move the charge-packets received from the image sensor elements to the gated charge-detector/amplifier.

Gated Charge-Detector/Amplifier — The output circuit of the CCD122/142 which receives the charge-packets from the CCD transport shift registers and provides a signal voltage proportional to the size of each charge-packet received. Before each new charge-packet is sensed, a reset clock returns the charge-detector voltage to a fixed base level.

Reset Clock ϕ_R — The voltage waveform required to reset the voltage on the charge-detector.

Sample-and-Hold Clock ϕ_{SH} — An internally supplied voltage waveform applied to the sampleand-hold gate in the amplifier to create a continuous sampled video signal at the output. The sample-and-hold feature can be defeated by connecting ϕ_{SH} to VDD.

Dark Reference — Video output level generated from sensing elements covered with opaque metalization providing a reference voltage equivalent to device operation in the dark. Permits use of external dc restoration circuitry.

White Reference — Video output level generated by on-chip circuitry providing a reference voltage permitting external automatic gain control circuitry to be used. The reference voltage is produced by charge-injection under the control of the electrical input bias voltage (VE). The amplitude of the reference is typically 70% of the saturation output voltage.

Isolation Cell — A site on-chip producing an element in the video output that serves as a buffer between valid video data and dark and white reference signals. The output from an isolation cell contains no valid video information and should be ignored.

Dynamic Range — The saturation exposure divided by the peak-to-peak noise equivalent exposure. (This does not take into account any dark signal components.) Dynamic range is

sometimes defined in terms of rms noise. To compare the two definitions a factor of four to six is generally appropriate in that peak-to-peak noise is approximately equal to four to six times rms noise.

Peak-to-Peak Noise Equivalent Exposure — The exposure level which gives an output signal equal to the peak-to-peak noise level at the output in the dark.

Saturation Exposure — The minimum exposure level that will produce a saturated output signal. Exposure is equal to the light intensity times the photosite integration time.

Charge Transfer Efficiency — Percentage of valid charge information that is transferred between each successive stage of the transport registers.

Spectral Response Range — The spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Responsivity — The output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure level.

Dark Signal — The output signal in the dark caused by thermally generated electrons which is a linear function of integration time and highly sensitive to temperature. (See accompanying photos for details of definition.)

Total Photoresponse Non-Uniformity — The difference of the response levels between the most and least sensitive elements under uniform illumination. (See accompanying photos for details of definition.)

Saturation Output Voltage — The maximum usable signal output voltage, measured from the zero reference level. (See timing diagram.) Any photoelement whose video output < saturation output voltage has an in-spec charge transfer efficiency (CTE). CTE will be below the specification if the video output \geq saturation output voltage.

Integration Time — The time interval between the falling edges of any two successive transfer pulses ϕx as shown in the timing diagram. The integration time is the time allowed for the photosites to collect charge.

Pixel - Picture element (photosite).

TEST LOAD CONFIGURATION

PHOTOELEMENT DIMENSIONS

All dimensions are typical values

5757071264678497849784

ABSOLUTE MAXIMUM RATINGS (Above which useful life may be impaired)

Storage To Operating	emperature Temperature (See curves)	− 25 °C to + 125 °C − 25 °C to + 70 °C
CCD122:	Pins 1, 4, 9, 10, 11, 13, 14, 16, 22, 23 Pins 5, 12, 17, 24 Pins 2, 3, 6, 7, 8, 15, 18, 19, 20, 21	– 0.3 V to 15 V 0 V NC
CCD142:	Pins 2, 5, 10, 11, 12, 16, 17, 19, 25, 26 Pins 6, 13, 14, 15, 20, 27, 28 Pins 1, 3, 4, 7, 8, 9, 18, 21, 22, 23, 24	– 0.3 V to 15 V 0 V NC

CAUTION NOTE: These devices have limited built-in gate protection. It is recommended that static discharge be controlled and minimized. Care must be taken to avoid shorting pins VIDEOOUT and EOSOUT to VSS or VDD during operation of the devices. Shorting these pins temporarily to VSS or VDD may destroy the output amplifiers.

DC CHARACTERISTICS: TP = 25°C (Note 1)

SYMBOL	CHARACTERISTIC		RANGE		LINITS	CONDITIONS
OTMEOL		MIN	TYP	МАХ		CONDITIONS
Vcd	Clock Driver Drain Supply Voltage	12.0	13.0	14.0	v	
ICD	Clock Driver Drain Supply Current		6.9	12.5	mA	
VDD	Output Amplifier Drain Supply Voltage	12.0	13.0	14.0	V	
loo	Output Amplifier Drain Supply Current		6.9	12.5	mA	
VPG	Photogate Bias Voltage	6.5	7.0	7.5	V	
VT	DC Electrode Bias Boltage	4.5	5.0	5.5	V	Note 2
VEI	Electrical Input Bias Voltage		11.4		V	Note 3
Vss	Substrate (Ground)		0.0		V	

AC CHARACTERISTICS: (Note 1)

 $TP = 25^{\circ}C$, $f\phi n = 0.5$ MHz, tint = 10 ms, light source = $2854^{\circ}K + 3.0$ mm thick Corning 1-75 IR-absorbing filter. All operating voltages nominal specified values.

SYMBOL	CHABACTERISTIC		RANGE		CONDITIONS	
OTIMEOL		MIN	TYP	MAX		CONDITIONS
DR	Dynamic Range					
	(relative to peak-to-peak noise)	250:1	500:1			Note 9
	(relative to rms noise)	1250:1	2500:1			
NEE	RMS Noise Equivalent Exposure		0.0002		μj/cm ²	Note 10
SE	Saturation Exposure		0.4		μj/cm ²	Note 11
CTE	Charge Transfer Efficiency		0.999995			Note 12
Vo	Output DC Level	3.0	5.5	10.0	V	
Z	Output Impedance		1.4	3.0	kΩ	
Р	On-Chip Power Dissipation					
	Clock Drivers		90	150	mW	
	Amplifiers		90	150	mW	
N	Peak-to-Peak Noise		2.0		mV	

CLOCK CHARACTERISTICS: TP = 25°C (Note 1)

SYMBOL	CHARACTERISTIC		RANGE		UNITS	CONDITIONS
		MIN	TYP	МАХ		
Vφτl	Transport Clock LOW	0.0	0.3	0.5	V	Notes 4, 5
Vøтн	Transport Clock HIGH	9.75	10.0	10.5	V	Note 5
Vøxl	Transfer Clock LOW	0.0	0.3	0.5	V	Notes 4, 6
Vøxн	Transfer Clock HIGH	9.75	10.0	10.5	V	Note 6
Vørl	Reset Clock LOW	0.0	0.3	0.5	V	Note 7
Vørh	Reset Clock HIGH	9.75	10.0	10.5	v	Note 7
fφR	Maximum Reset Clock Frequency (Output Data Rate)	1.0	2.0		MHz	Note 8

PERFORMANCE CHARACTERISTICS: (Note 1)

TP = 25°C, for = 0.5 MHz, tint = 10 ms, light source = 2854°K + 3.0 mm thick Corning 1-75 IR-absorbing filter. All operating voltages nominal specified values.

SYMBOL	CHABACTERISTIC		RANGE		UNITS	CONDITIONS
OTMEDE		MIN	TYP	MAX		CONDITIONS
PRNU*	Photoresponse Non-uniformity					
	Peak-to-Peak		160	210	mV	Note 16
	Peak-to-Peak without Single-Pixel Positive and Negative Pulses		100		mV	Note 16
	Single-pixel Positive Pulses		85		mV	Note 16
	Single-pixel Negative Pulses		130		mV	Note 16
	Register Imbalance ("Odd"/"Even")		20		mV	Note 16
DS	Dark Signal					
	DC Component		5	15	mV	Notes 13, 14
	Low Frequency Component		5	10	mV	Notes 13, 14
SPDSNU	Single-pixel DS Non-uniformity		20	40	mV	Notes 13, 15
R	Responsivity	2.0	3.5	5.0	Volts per μj/cm ²	Note 17
VSAT	Saturation Output Voltage	800	1400	1600	mV	Note 18

*All PRNU Measurements taken at a 700 mV output level using an f/2.8 lens and excluded the outputs from the first and last elements of the array. The "f" number is defined as the distance from the lens to the array divided by the diameter of the lens aperture. As the f number increases, the resulting more highly columnated light causes the package window aberrations to dominate and increase PRNU. A lower f number results in less columnated light causing device photosite blemishes to dominate the PRNU.

NOTES:

- TP is defined as the package temperature. 1.
- 2. VT should be equal to (1/2) VoTH.
- 3. VEI is used to generate the end-of-scan output and the white reference output. These two signals can be eliminated by connecting VEI to a voltage level equal to VoXH + 5 V.
- 4. Negative transients on any clock pin going below 0.0 V may cause charge-injection which results in an increase of apparent DS.
- C¢T ≅ 700 pF 5.
- 6. $C\phi X \cong 300 \text{ pF}$
- 7. Corr a 5 dF
- 8. Minimum clock frequency is limited by increase in dark signal.
- Dynamic range is defined as VSAT/peak-to-peak (temporal) or VSAT/rms noise. 1 μ J/cm² = 0.02 fcs at 2854°K, 1 fcs = 50 μ J/cm² at 2854°K. 9.
- 10.
- SE for 2854 K for light without 3.0 mm thick Corning 1-75 IR-absorbing filter is typically 0.8 μ /cm². CTE is the measurement for a one-stage transfer. 11. 12.
- 13. See photographs for DS definitions.
- 14. Dark signal component approximately doubles for every 5°C increase in TP.
- Each SPDSNU is measured from the DS level adjacent to the base of the SPDSNU. The SPDSNU approximately doubles for every 8°C in-15.
- crease in TP. See photographs for PRNU definitions. 16.
- 17. Responsivity for 2854 °K light source without 3.0 mm thick Corning 1-75 IR-absorbing filter is typically 2 V per µj/cm².
- 18. See test load configurations.

TEST CONDITIONS

TP ≅ +25°C, føR = 0.5 MHz, tint = 10.0 ms, all voltages nominal spec-sheet values. Illumination: 2854°K source with a 3.0 mm thick Corning 1-75 IR-absorbing filter. PRNU measurements taken at an output voltage of 700 mV.

PRNU PARAMETERS (CONTINUED)

TEST CONDITIONS

TP ≅ +25°C, feR = 0.5 MHz, tint = 10.0 ms, all voltages nominal spec-sheet values. Illumination: 2854°K source with a 3.0 mm thick Corning 1-75 IR-absorbing filter. PRNU measurements taken at an output voltage of 700 mV.

FAIRCHILD • CCD122/142

DS PARAMETERS (CONTINUED)

FAIRCHILD • CCD122/142

The Corning 1-75 filter has the following typical transmittance spectral characteristic: >85% at <600 nm, 60% at 700 nm, 30% at 800 nm, 5% at 900 nm and <2% at >1000 nm.

OUTPUT SIGNAL LEVEL VERSUS INTEGRATION TIME 2854°K TUNGSTEN SOURCE WITH CORNING 1-75 FILTER 100 500 # W/cm2 %001 8 × 250 Wicma SATURATION OUTPUT SIGNAL OUTPUT 40 125 . W/cm2 25 "W/cn 0 6 2.0 4.0 6.0 8.0 10.0 t_{int} - INTEGRATION TIME - ms

NORMALIZED SPATIAL FREQUENCY

FAIRCHILD • CCD122/142

DEVICE CARE AND OPERATION:

Glass may be cleaned by saturating a cotton swab in alcohol and lightly wiping the surface. Rinse off the alcohol with de-ionized water. Allow the glass to dry preferably by blowing with filtered dry N₂ or air.

It is important to note in design and applications considerations that the devices are very sensitive to thermal conditions. The dark signal DC and low frequency components approximately double for every 5°C temperature increase and single-pixel dark signal non-uniformities approximately double for every 8°C temperature increase. The devices may be cooled to achieve very long integration times and very low light level capability.

ORDER INFORMATION - Order CCD122DC where "D" stands for a ceramic package and "C" for commercial temperature range.

The pins on the CCD122DC and the CCD142DC are arranged to allow the 24-pin CCD122DC to be placed in a 28-pin CCD142DC socket. To do so, the CCD122DC is positioned in the center of the 28-pin socket such that Pin 1 of the device aligns with Pin 2 of the socket and Pin 12 of the device with Pin 13 of the socket.

Also available are printed circuit boards that include all the necessary clocks, logic drivers and video amplifiers to operate the CCD122DC or CCD142DC. The boards are fully assembled and tested and require only one power supply for operation (+ 15 V). The printed circuit board order codes are: CCD122DB, CCD142DB. For further information on the boards please call your nearest Fairchild sales office. For any technical assistance, call (415) 493-8001.

CCD122 AND CCD142DB DESIGN DEVELOPMENT BOARDS

The Fairchild CCD122DB and CCD142DB design development boards are printed circuit cards which are intended for use as educational aids for gaining understanding of the operating characteristics of Fairchild CCD122 and CCD142 line scan image sensors and for use in assembly of experimental systems using the line scan sensors. The design development boards are sold fully assembled and tested, and require only connection of a single power supply input of +15V and connection of an oscilloscope to display the video information detected by the sensor.

The boards, Figure 1, are 4 1/2 by 5 inches. A socket for installation of the charge coupled device line scan sensor is mounted centrally on the back (wiring) side of the card. The user can readily mount a lens in front of the sensor if required for his study. Board I/O connections are made through a 22 position double readout edge card connector with .156 inch center-to-center finger spacings. The edge connector is compatible with a TRW/CINCH type 50-44B-10 or equivalent.

When a CCD142 is being used with a design development board, it should be installed in the sensor connector in normal fashion. When a CCD122 is being used, it should be inserted into the center of the socket so that socket terminals 1, 14, 15, and 28 are left open.

The board circuit, Figure 2, requires a power supply positive input of $15\pm2V$ at 250mA maximum to Pins 1 and A of the edge card connector. The negative power supply line should be wired to the principle board ground contact on Fingers 22 and Z.

Three regulators on the design development boards provide V_{DD} sensor supply voltage which is adjusted to +12.0V, a clock high level voltage which is set to +10.0V, and a +5V $V_{\Gamma\Gamma}$ required by the TTL logic circuitry.

For normal self-contained operation of the board, Connector Terminals 3 and 5 are left open. Voltage Controlled Oscillator UI generates a video clock signal which may be adjusted to provide data rates of approximately .5 to to 2.0 MHz by potentiometer Rl. VCO UI operates at twice the video data rate and four times the ϕ_T transport clock frequency. The frequency of the videc clock square wave from UI is divided by four by flip-flop U2A and U2B; one-half of MOS driver U4 amplifies the flip-flop output to provide the ϕ_T transport clock signal required by the CCD image sensor. The normal amplitude of the ϕ_T clock signal at the sensor terminal is from a low of about 0.5V to a high of about 11.5V, in accordance with the sensor data sheet recommendations. The ϕ_R reset clock signal is generated by UI and flip-flip U2A and is amplified through U5 to deliver a ϕ_R clock frequency twice that of ϕ_T to the sensor.

One-shot U7A and JK flip-flops U3A and U3B develop a properly synchronized φ_X signal which is amplified by the second half of the 9644 driver U4. The interval between φ_X pulses is the exposure time for the sensor; exposure time may be adjusted by R2.

In keeping with good high frequency engineering practice, damping resistors R5, R6, and R7 are used in the MOS driver output lines to minimize overshoot and ringing contents in the clock signals supplied to the CCD. Clamp diodes CR4, CR5 and CR6 are used to prevent CCD clock signal excursions below ground; negative clock line transients at the CCD terminals can cause charge-injection which may result in an apparent increase in the dark signal non-uniformity of the sensor.

If Ul is removed from the circuit, the ϕ_T driver will respond to an external data rate clock input on Pin 5. The video data rate for the sensor will be one-half the frequency of the clock signal supplied to Pin 5. If U7 is removed, an external exposure control may be inputed to Pin 3. Sensor exposure intervals are terminated by low-to-high transition on Pin 3.

Connector Figure 7 and 9 provide exposure time and data rate clock output signals for external usage; i.e., for synchronizing an oscilloscope for display of the sensor output signals.

The dc bias voltages applied to the V_T transport register electrodes and VEI bias voltage electrodes are preset to give optimal performance of the transport clock, white reference and end-of-scan signals. VEI may be increased to VDD to disable the white reference level generating circuitry within the sensor.

The video output register signal ($V_{\rm OUT}$) passes through a simple 2MHZ cutoff low pass filter formed by Ql, Q2 and associated capacitance and resistance circuits and is then routed off the board at connector finger ll through 75 ohm resistor R24. Capacitors CX1, CX2 and CX3 may be installed by the user to provide high frequency rolloff as required to reduce high frequency on the output video signal.

The end-of-scan pulse (VEOS) is buffered by Q3 and sent off the board at connector finger 13 through 75 ohm resistor R27. This pulse indicates that the readout of a line of video information is completed. The EOS pulse was injected into the EOS register by transfer pulse ϕ_X applied to the sensor U6 at pin 16.

CCD133/143

1024/2048-ELEMENT HIGH-SPEED LINEAR IMAGE SENSOR FAIRCHILD CHARGE-COUPLED DEVICE

GENERAL DESCRIPTION

The CCD133 and CCD143 are 1024 and 2048-element line image sensors, respectively. The charge-coupled devices are designed for page scanning applications including facsimile, optical character recognition, and other imaging applications which require high resolution, high sensitivity, and high data rates.

The 1024 sensing elements of the CCD133 provide a 120-line per inch resolution across an 8 1/2-inch page and the 2048 sensing elements of the CCD143 an 8-line per millimeter resolution across a 256-millimeter page adopted as the Japanese facsimile standard.

The CCD133 and the CCD143 are second generation devices having an overall improved performance compared with the first generation devices including higher sensitivity, an enhanced blue response and a lower dark signal. The devices also incorporate on-chip clock driver circuitry and are capable of high-speed operation up to a 20 MHz data rate. The photoelement size is 13 μ m (0.51 mils) by 13 μ m (0.51 mils) on 13 μ m (0.51 mils) centers. The devices are manufactured using Fairchild advanced charge-coupled device n-channel lsoplanar buried-channel technology.

- HIGH SPEED: UP TO 20 MHz DATA RATE
- ENHANCED SPECTRAL RESPONSE (PARTICULARLY IN THE BLUE REGION)
- . LOW DARK SIGNAL
- HIGH RESPONSIVITY
- ON-CHIP CLOCK DRIVERS
- DYNAMIC RANGE TYPICAL: 2500:1
- OVER 1 V PEAK-TO-PEAK OUTPUTS
- DARK AND WHITE REFERENCES CONTAINED IN
- SAMPLE-AND-HOLD OUTPUTS
- SINGLE POWER SUPPLY

PIN NAMES

Vpg	Photogate
¢x	Transfer Clock
фт	Transport Clock
VIDEOOUT A	Output Amplifier A Source
VIDEOOUT B	Output Amplifier B Source
Vdd	Output Amplifier Drain
Vcd	Clock Driver Drain
Vei	Electrical Input Bias
Vτ	Analog Transport Shift Register DC Electrode
EOSout	End-of-Scan Output
φshga	Sample-and-Hold Gate A
φshca	Sample-and-Hold Clock A
¢SHGB	Sample-and-Hold Gate B
фѕнсв	Sample-and-Hold Clock B
Vss	Substrate (GND)
NC	No Connection (Do not Ground)

AND AND A REAL PROPERTY AND A R

47

CONNECTION DIAGRAM DIP (TOP VIEW)

FUNCTIONAL DESCRIPTION

The CCD133/143 consists of the following functional elements illustrated in the Block Diagram:

Image Sensor Elements — These are elements of a line of 1024/2048 image sensors separated by diffused channel stops and covered by a silicon dioxide surface passivation dioxide layer. Image photons pass through the transparent silicon dioxide layer and are absorbed in the single crystal silicon creating hole-electron pairs. The photon generated electrons are accumulated in the photosite. The amount of charge accumulated in each photosite is a linear function of the incident illumination intensity and the integration period. The output signal will vary in an analog manner from a thermally generated noise background at zero illumination.

Transfer Gate — This gate is a structure adjacent to the line of image sensor elements. The charge-packets accumulated in the image sensor elements are transferred out via the transfer gate to the transport registers whenever the transfer gate voltage goes HIGH. Alternate chargepackets are transferred to the analog transport shift registers. The transfer gate also controls the exposure time for the sensing elements and permits entry of charge to the End-of-Scan (EOS) shift registers creating the endof-scan waveform.

Four 529/1041-Bit Analog Shift Registers — Two registers are on each side of the line of image sensor elements and separated from it by the transfer gate. The two inside registers, called the transport shift registers, are used to move the image generated charge-packets delivered by the transfer gate serially to the two charge-detector/ amplifiers. The complementary phase relationship of the last elements of the two transport shift registers provides for alternate delivery of charge-packets to the amplifiers so that the original serial sequence of the line of video may be reestablished at the outputs. The outer two registers serve to deliver the end-of-scan waveform and reduce peripheral electron noise in the inner shift registers.

Two Gated Charge-Detector/Amplifiers — From the end of each transport shift register, charge-packets are delivered to a precharged diode whose potential changes linearly in response to the quantity of the signal charge delivered. This potential is applied to the gate of an nchannel MOS transistor producing a signal which passes through the sample-and-hold gate to the output at VIDEOoUT. The sample-and-hold gate is a switching MOS transistor in the output amplifier that allows the output to be delivered as a sample-and-hold waveform. The diode is recharged internally before the arrival of each new signal charge-packet from the transport shift register.

Clock Driver Circuitry — This circuitry allows operation of the CCD133/143 using only two external clocks, (1) a square wave Transport Clock which controls the readout rate of video data from the sensor, and (2) a Transfer Clock pulse which controls the integration time of the sensor.

Dark and White Reference Circuitry — Four additional sensing elements at both ends of the 1024/2048 array are covered by opaque metalization. They provide a dark (no illumination) signal reference which is delivered at both ends of the line of video output representing the 1024/2048 illuminated sensor elements (labeled "D" in the Block Diagram). Also included at one end of the 1024/2048 sense element array is a white signal reference level generator which likewise provides a reference in the output signal (labeled "W" in the Block Diagram). These reference levels are useful as inputs to external dc restoration and/or automatic gain control circuitry.

DEFINITION OF TERMS

Charge-Coupled Device — A charge-coupled device is a semiconductor device in which finite isolated chargepackets are transported from one position in the semiconductor to an adjacent position by sequential clocking of an array of gates. The charge-packets are minority carriers with respect to the semiconductor substrate.

Transfer Clock ϕ_X —The transfer clock is the voltage waveform applied to the transfer gate to move the accumulated charge from the image sensor elements to the CCD transport shift registers.

Transport Clock ϕ_T —The transport clock is the clock applied to the gates of the CCD transport shift registers to move the charge-packets received from the image sensor elements to the gated charge-detector/amplifiers.

Gated Charge-Detector/Amplifiers — These are the output circuits of the CCD133/143 which receive the chargepackets from the CCD transport shift registers and provide a signal voltage proportional to the size of each chargepacket received. Before each new charge-packet is sensed, an internal reset clock returns the charge-detector voltages to a fixed base level.

Sample-and-Hold Clock ϕ_{SHC} —This is an internally supplied voltage waveform applied to the sample-and-hold gate in the amplifiers to create a continuous sampled video signal at the output. The sample-and-hold feature can be defeated by connecting ϕ_{SHGA} and ϕ_{SHGA} to V_{DD} and leaving pins ϕ_{SHCA} and ϕ_{SHCB} unconnected.

Dark Reference — Video output level generated from sensing elements covered with opaque metalization provides a reference voltage equivalent to device operation in the dark. This permits use of external dc restoration circuitry.

White Reference —Video output level generated by onchip circuitry provides a reference voltage permitting external automatic gain control circuitry to be used. The reference voltage is produced by charge-injection under the control of the electrical input bias voltage (VEI). The amplitude of the reference is typically 70% of the saturation output voltage.

Isolation Cell—This is a site on-chip producing an element in the video output that serves as a buffer between valid video data and dark and white reference signals. The output from an isolation cell contains no valid video information and should be ignored.

Dynamic Range—The dynamic range is the saturation exposure divided by the peak-to-peak noise equivalent exposure. (This does not take into account any dark signal components.) Dynamic range is sometimes defined in terms of rms noise. To compare the two definitions a factor of four to six is generally appropriate in that peak-to-peak noise is approximately equal to four to six times rms noise. Peak-to-Peak Noise Equivalent Exposure — This is the exposure level which gives an output signal equal to the peakto-peak noise level at the output in the dark.

Saturation Exposure — Saturation exposure is the minimum exposure level that will produce a saturated output signal. Exposure is equal to the light intensity times the photosite integration time.

Charge Transfer Efficiency — This is the percentage of valid charge information that is transferred between each successive stage of the transport registers.

Spectral Response Range—This is the spectral band in which the response per unit of radiant power is more than 10% of the peak response.

Responsivity — Responsivity is the output signal voltage per unit exposure for a specified spectral type of radiation. Responsivity equals output voltage divided by exposure level.

Dark Signal — This is the output signal in the dark caused by thermally generated electrons which is a linear function of integration time and highly sensitive to temperature. (See accompanying photos for details of definition.)

Total Photoresponse Non-Uniformity—This is the difference in the responsive levels between the most and least sensitive elements under uniform illumination. (See accompanying photos for details of definition.)

Integration Time —The time interval between the falling edges of any two successive transfer pulses ϕx is the integration time shown in the Timing Diagram. The integration time is the time allowed for the photosites to collect charge:

Pixel-This is a picture element (photosite).

TEST LOAD CONFIGURATION

PHOTOELEMENT DIMENSIONS

All dimensions are typical values.

ABSOLUTE MAXIMUM RATINGS (Above which useful life may be impaired)

Storage Temperature	-25°C to +125°C
Operating Temperature (See curves)	-25°C to +70°C
CCD133: Pins 2, 3, 4, 8, 11, 12, 14, 15, 16, 17, 18, 21, 22, 24	-0.3 V to 18 V
Pin 13	0 V
Pins 1, 5, 6, 7, 9, 10, 19, 20, 23	NC
CCD143: Pins 3, 4, 5, 9, 12, 13, 17, 18, 19, 20, 21, 24, 25, 27	-0.3 V to 18 V
Pins 14, 15, 16, 28	0 V
Pins 1, 2, 6, 7, 8, 10, 11, 22, 23, 26	NC

CAUTION NOTE: These devices have limited built-in gate protection. It is recommended that static discharge be controlled and minimized. Care must be taken to avoid shorting pins VIDEOout A&B and EOSout to Vss or Vpp during operation of the devices. Shorting these pins temporarily to Vss or Vpp may destroy the output amplifiers.

DC CHARACTERISTICS: $T_P = 25^{\circ}C$ (Notes 1, 2)

			RANGE			
SYMBOL	CHARACTERISTIC	MIN	ТҮР	MAX	UNITS	CONDITIONS
VCD	Clock Driver Drain Supply Voltage	13.5	14	14.5	v	Note 3
ICD	Clock Driver Drain Supply Current		7.0	15	mA	
VDD	Output Amplifier Drain Supply Voltage	13.5	14	14.5	v	Note 3
ICD	Output Amplifier Drain Supply Current		15	25	mA	
VPG	Photogate Bias Voltage	8.5	9.0	9.5	V	
VT	DC Electrode Bias Voltage	5.5	6.0	6.5	v	Note 4
VEI	Electrical Input Bias Voltage		10.5		v	Note 5
Vss	Substrate (Ground)		0.0		V	

CLOCK CHARACTERISTICS: TP = 25°C (Note 1)

			RANGE			
SYMBOL	CHARACTERISTIC	MIN	TYP	МАХ	UNITS	CONDITIONS
νφχί, νφτι	Transfer & Transport Clock LOW	0.0	0.3	0.5	v	Notes 6, 7
Vфхн, Vфтн	Transfer & Transport Clock HIGH	11	11.5	12	v	Note 7
fdata max	Maximum Output Data Rate	12	20		MHz	Notes 8, 9

NOTES

1. TP is defined as the package temperature.

2. All Vss pins must be grounded. All Vpp pins must be connected and tied to Vcp. All NC pins must be left unconnected.

3. VDD = VCD.

4. VT = 0.55 VφxH = 0.55 VφTH.

5. Ver is used to generate the end-of-scan output and the white reference output. These two signals can be eliminated by connecting Ver to a voltage level equal to VoxH + 5 V.

6. Negative transients on any clock pin going below 0.0 V may cause charge-injection which results in an increase in apparent DS.

7. Cot = 350 pF for CCD133, Cot = 700 pF for CCD143, Cox = 150 pF for CCD133, Cox = 300 pF for CCD143. 8. Minimum clock frequency is limited by increase in dark signal.

9 fDATA = 2 X f $d\tau$

10. Dynamic range is defined as V_{SAT}/peak-to-peak temporal noise or V_{SAT}/rms temporal noise.

11. 1µj/cm² = 0.02 fcs at 2854°K, 1 fcs = 50 µj/cm² at 2854°K.

12. SE for 2854°K broadband light without 2.0 mm Schott BG-38 and OCLI WBHM filters is typically 0.8 µj/cm².

13. CTE is the measurement for a one-stage transfer.

14. See photographs for PRNU definitions.

15. Video mismatch is the difference in ac amplitudes between VIDEOOUTA and VIDEOOUTB under uniform illumination. It can be eliminated by attenuation/ amplification of one of the video outputs.

16. DC mismatch is the difference in dc output level (Vo) between VIDEOoutA and VIDEOoutB.

17. See photographs for DS definitions.

18. Dark signal component approximately doubles for every 5° C increase in Tp.

19. Each SPDSNU is measured from the DS level adjacent to the base of the SPDSNU. The SPDSNU approximately doubles for every 8° C increase in Tp.

20. Responsivity for 2854° K broadband light source without 2.0 mm Schott BG-38 and OCLI WB Hitlers is typically 2 V per µ/cm2.

21. See test load configurations.

AC CHARACTERISTICS: (Note 1)

TP = 25° C, fDATA = 5.0 MHz, tint = 1.0 ms, Light Source* = 2854° K + 2.0 mm thick

Schott BG-38 and OCLI WBHM filters All operating voltages nominal specified values

			RANGE			
SYMBOL	CHARACTERISTIC	MIN	TYP	MAX	UNITS	CONDITIONS
DR	Dynamic Range (relative to peak-to-peak noise) (relative to rms noise)	500:1 2500:1	1000:1 5000:1			Note 10
NEE	RMS Noise Equivalent Exposure		0.00013		µj/cm2	Note 11
SE	Saturation Exposure		0.67		µj/cm²	Note 12
CTE	Charge Transfer Efficiency		0.99999			Note 13
Vo	Output DC Level	4.0	8.0	11.0	v	
Z	Output Impedance		0.75	1.5	kΩ	
Ρ	On-Chip Power Dissipation Clock Drivers Amplifiers		100 170	215 325	mW mW	
N	Peak-to-Peak Temporal Noise		2.0		mV	

PERFORMANCE CHARACTERISTICS: (Note 1)

 $T_{P}=25^{\circ}\,C,~f_{DATA}=5.0~\text{MHz},~t_{int}=1.0~\text{ms},~\text{Light Source}^{\star}=2854^{\circ}\,\text{K}+2.0~\text{mm}$ thick Schott BG-38 and OCLI WBHM filters

All operating voltages nominal specified values

	CHARACTERISTIC		RANGE			
SYMBOL		MIN	TYP	MAX	UNITS	CONDITIONS
PRNU**	Photoresponse Non- o Uniformity:					Note 14
	Peak-to-Peak		180	240	mV	
	Peak-to-Peak Without Single-Pixel Positive & Negative Pulses		120		mV	
	Single-Pixel Positive Pulses		100		mV	
	Single-Pixel Negative Pulses		150		mV	
MVIDEO	Video Mismatch		40	160	mV	Note 15
MDC	DC Mismatch		0.5	2.0	v	Note 16
DS	Dark Signal:					Notes 17, 18
	DC Component		2.0	5.0	mV	
	Low Frequency Component		2.0	5.0	mV	
SPDSNU	Single-Pixel DS Non-Uniformity		5.0	20	mV	Notes 17, 19
R	Responsivity	1.8	3.0	4.5	Volts per µj/cm ²	Note 20
VSAT	Saturation Output Voltage	1.0	. 2.0	2.5	V	Note 21

• OCLI WBHM = Optical Coating Laboratory, Inc. Wide Band Hot Mirror •• PRNU measurements include both register outputs but exclude the outputs from the first and last elements of the array. Also excluded from the measurement are video and dc mismatch.

All PRNU measurements are taken at a 800 mV output level using an 1/5.0 lens. The "n umber is defined as the distance from the lens to the array divided by the diameter of the lens aperture. As the "f" number increases, the resulting more highly columnated light causes the package window aberrations to dominate and increase PRNU. A lower "f" number results in less columnated light causing device photosite blemishes to dominate the PRNU.

TYPICAL PERFORMANCE CURVES

λ,

TYPICAL PERFORMANCE CURVES

MODULATION TRANSFER FUNCTIONS FOR NARROW BAND ILLUMINATION SOURCES SPATIAL FREQUENCY - Cycles/mm

SINGLE-PIXEL DARK SIGNAL NON-UNIFORMITIES VERSUS INTEGRATION TIME

Trp = +25°C, forta = 5.0 MHz, t_{nt} = 1.0 ms. All voltages nominal specified values. Light source = 2854°K tungsten + 2.0 mm thick Schott BG-38 and OCLI WBHM filters. PRNU measurements taken at an output voltage of = 800 mV. Output fed through 5 MHz low pass filter.

DARK SIGNAL PARAMETERS (DS)

 $T_{\rm P}$ = +25° C, f_{DATA} = 5.0 MHz, t_{int} = 1.0 ms. All voltages nominal specified values. Output fed through 5 MHz low pass filter

••

A Schlumberger Company

FAIRCHILD • CCD133/143

DEVICE CARE AND OPERATION

Glass may be cleaned by saturating a cotton swab in alcohol and lightly wiping the surface. Rinse off the alcohol with deionized water. Allow the glass to dry, preferably by blowing with filtered dry N₂ or air.

It is important to note in design and applications considerations that the devices are very sensitive to thermal conditions. The dark signal dc and low frequency components approximately double for every 5°C temperature increase and single-pixel dark signal non-uniformities approximately double for every 8°C temperature increase. The devices may be cooled to achieve very long integration times and very low light level capability.

ORDER INFORMATION

Order CCD133DC, or CCD143DC, where "D" stands for a ceramic package and "C" for commercial temperature

range. The pins on the CCD133DC and the CCD143DC are arranged to allow the 24-pin CCD133DC to be placed in a 28-pin CCD143DC socket. To do so, CCD133DC is positioned in the center of the 28-pin socket such that Pin 1 of the device aligns with Pin 2 of the socket and Pin 12 of the device with Pin 13 of the socket.

Also available are printed circuit boards that include all the necessary clocks, logic drivers and video amplifiers to operate the CCD133DC or CCD143DC. The boards are fully assembled and tested and require only one power supply for operation (+20 V). The printed circuit board order codes are: CCD133DB, CCD143DB.

For further information on the boards, please call your nearest Fairchild Sales Office. For any technical assistance, call (415) 493-8001.

CCD133DB AND CCD143DB DESIGN DEVELOPMENT BOARDS

The Fairchild CCD133DB and CCD143DB design development boards are printed circuit cards which are intended for use as educational aids for gaining understanding of the operating characteristics of Fairchild CCD133 and CCD143 line scan image sensors and for use in assembly of experimental systems using the line scan sensors. The design development boards are sold fully assembled and tested, and require only connection of a single power supply input of +20V and connection of an oscilloscope to display the video information detected by the sensor.

The boards, Figure 1, are 4 1/2 by 5 inches. A socket for installation of the charge coupled device line scan sensor is mounted centrally on the back (wiring) side of the card. The user can readily mount a lens in front of the sensor if required for his study. Board 1/0 connections are made through a 44 position double readout edge card connector with .156 inch center-to -center finger spacings. The edge connector is compatible with a TRW/CINCH type 50-44B-10 or equivalent.

When a CCD143 is being used with a design development board, it should be installed in the sensor connector in normal fashion. When a CCD133 is being used, it should be inserted into the center of the socket so that socket terminals 1, 14, 15, and 28 are left open.

The board circuit, Figure 2, requires a power supply positive input of 20+2V at 300mA maximum to Pins 1 and A of the edge card connector. The negative power supply line should be wired to the principle board ground contact on edge Fingers 22 and Z.

Three regulators on the design development boards provide a $V_{\rm DD}$ sensor supply voltage which is adjusted to +15.0V, a clock high level voltage which is set to +12.0V, and a +5V $V_{\rm CC}$ required by the TTL logic circuitry.

For normal self-contained operation of the board, Connector Terminal 17 is left open. Voltage Controlled Oscillator UI generates a video clock signal which may be adjusted from approximately 5 to 20 MHz by potentiometer R1. The frequency of the video clock square wave from UI is divided by two by flip-flop U2A; one-half of MOS driver U4 amplifies the flip-flop output to provide the ϕ_T transport clock signal required by the CCD image sensor. The normal amplitude of the ϕ_T clock signal at the sensor terminal is from a low of about 0.5V to a high of about 11.5V, in accordance with the sensor data sheet recommendations. Sensor characteristics at other clock conditions can be evaluated by adjustment of R28.

One-shot U7A and JK flip-flop U2B develop a properly synchronized ϕ_X signal which is amplified by the second half of the 9644 driver U4. The interval between ϕ_X pulses is the exposure time for the sensor; exposure time may be adjusted by R2.

In keeping with good high frequency engineering practice, damping resistors R6 and R7 are used in the MOS driver output lines to minimize overshoot and ringing contents in the clock signals supplied to the CCD. Clamp diodes CR3 and CR4 are used to prevent CCD clock signal excursions below ground; negative clock line transients at the CCD terminals can cause charge-injection which may result in an apparent increase in the dark signal non-uniformity of the sensor.

If Finger 17 of the card is held low, the $\phi_{\rm T}$ driver will respond to an external data rate clock input on Pin 5 and an external exposure control input to Pin 3. The combined video data rate for the sensor will be equal to the frequency of the clock signal supplied to Pin 5. Sensor exposure intervals are terminated by low-to-high transition on Pin 3.

Connector Figures 7 and 9 provide exposure time and data rate clock output signals for external usage; i.e., for synchronizing an oscillosope for display of the sensor output signals.

The dc bias voltage applied to the V_T transport register electrodes of the CCD is controlled by R30. This voltage is typically 0.55 times the clock high voltage being supplied to the sensor for best performance. Bias voltage V_{EI} can be set to about 10.5V by R27 to obtain the white reference element output with the video data stream, or it can be increased to V_{DD} to disable the white reference level generating circuitry within the sensor.

The video signals at the two output ports of the CCD line scan sensor are buffered by emitter followers Q2 and Q3 and then made available on connector Fingers 11 and 15. If long co-axial cables are wired to the outputs, the cables should be terminated in 75 ohms for best frequency response. The cable terminations will reduce the video signal amplitude by one-half.

The sensors end-of scan output is also buffered by an emitter follower and is then made available on Pin 13. This signal can be amplified and clipped for use as a system synchronizing pulse if desired.

AIRCHI

. #

*

C EXPOSURE TIME DUT CLOCK 750 U Voa - (i) VEOS چ و VEII ADI Kr27 Kr27 Cr5 Cr5 815 D 25 R23 750 C17 639 1990 51+ Tight to the start of the start 5.1K 55 192 192 -0 VCC 1 - Carely CRI भू । भू । भू <u>ا</u> ج • ¥ -[4] 8 1¥ 8 -1 c26 1 c27 1 c28 1 c29 1 c30 1 c31 1 c32 부망물 CCD 133/143 U6 £ 8 510D Nos ¢, 29HBC Del. 4 33 F Rios cio- wis 2 V20 ¥ X NSHBC 200 Vcc o [%]SS 다. 1917년 1917년 200 -10⁴ VT ADJ. 1²C7 VCLH P007 -11 202 Vio CCD 133/143 DESIGN DEVELOPMENT BOARD 1 2 2 2 ş. (× 5 ະ2≍ 78MO5 UC REG-3 +LC24 LC25 UZA U2B + 12V o V_{CLH} 2000 2845 2845 2845 2845 ß s°° U78 \$^{R29} 5.# PERŝ C23 REG-2 78MG T2 ŝ NOTE: ALL DIODES FDH-600 ALL TRANSISTORS 2N5772 • NOT INSTALLED FOR HIGH FREQUENCY OPERATION C22++ + 15V o VDD \$⁸²⁶ 51K 11C24 DATA CLOCK U1 ŝ 행 78MG +_____720 -___720 -___720 -___221 REG-1 225 555 1 355 A 8 다. 탄탄 DATA RATE ADJ. VCC O WIX Vcc 0 500K EXPOSURE ş° 23 INPUT CO-INT EXT SELECTOR EXT DATA EXT EXPOSURE CONTROL IN

Schlumberger Compan

DESCRIPTION

The CCD222 is a 488 × 380-element solid-state chargecoupled device area image sensor which is intended for use as a high-resolution detector in television compatible imaging systems and a variety of other scientific and industrial optical instrumentation systems. The CCD222 is organized as a matrix array of 488 horizontal lines by 380 vertical columns of charge-coupled photoelements. The dimensions of these 185,440 photoelements are 12µm horizontally by 18µm vertically. The photoelements are precisely positioned on 30µm horizontal centers and 18µm vertical centers. The CCD222 has an active optical area of 8.8 by 11.4 mm, with a diagonal of 14.4 mm.

The low noise performance of the buried channel CCD structure provides excellent low-light-level capabilities when the sensor is cooled; performance adequate for most applications can be achieved with the sensor at room temperature or above. The geometric accuracy of the device structure, combined with a video readout which is controlled by digital clock signals, allows the signal output from each photoelement to be precisely identified for easy realization of computer-based image processing systems. The devices can be used in video cameras that require low power, small size, high sensitivity, high reliability and rugged construction.

FEATURES

- 185.440 SENSING ELEMENTS ON A SINGLE CHIP
- AVAILABLE HORIZONTAL RESOLUTION: 380 ELEMENTS PER LINE

CCD 222 488×380-Element Area Image Sensor

CCD Imaging

- AVAILABLE VERTICAL RESOLUTION: 488 LINES NO LAG, NO GEOMETRIC DISTORTION
- A GAMMA OF UNITY
- HIGH DYNAMIC RANGE TYPICALLY > 1,000:1 at 25°C (EXCLUDING DARK SIGNAL NON-UNIFORMITY) п LOW LIGHT LEVEL CAPABILITY, LOW NOISE
- EQUIVALENT EXPOSURE
- VIDEO DATA RATES UP TO 20 MHz, FRAME RATES TO 90 Hz
- SAMPLE-AND-HOLD VIDEO OUTPUT
- LOW POWER DISSIPATION, SOLID-STATE RELIABILITY AND SMALL SIZE
- STANDARD TV ASPECT RATIO (4:3)
- SATISFIES NTSC RESOLUTION STANDARDS
- TWO-PHASE REGISTER CLOCKING
- DIGITALLY-CONTROLLED READOUT

FUNCTIONAL DESCRIPTION

The CCD222 consists of the functional elements illustrated in the Block Diagram:

Image Sensing Elements

Image photons pass through a transparent polycrystalline silicon gate structure and are absorbed in the silicon crystal structure creating hole-electron pairs. The resulting photoelectrons are collected in the photosites during the integration period. The amount of charge accumulated in each photosite is a linear function of the localized incident illumination intensity and the integration period.

Vertical Transport Registers

The interline transfer architecture of the CCD222 provides video information in two sequential fields of 244 lines each. At the end of an integration period, when the photogate voltage ϕ_p is lowered and the ϕ_{V1} clock is HIGH, charge packets from odd-numbered photosite rows (1,3,5...487) are transferred to the vertical transport registers to initiate an odd-field readout. Clocking ϕ_{V1} and ϕ_{V2} transports the charge packets up the vertical transport registers where they are transferred line by line into the horizontal output register. After readout of the odd field, the ϕ_p voltage is again lowered and the ϕ_{V2} clock is HIGH causing transfer of charge packets from even numbered photosite rows (2,4,6...488) into the vertical readout.

Horizontal Analog Transport Register

The horizontal transport register is a 385-element 2-phase register that receives the charge packets from the vertical

registers line by line. After each line of information is transferred from the vertical transport registers, it is moved serially to the output amplifier by the complementary horizontal clocks ϕ_{H1} and ϕ_{H2} . A minimum of 385 horizontal clock pulses are required to complete transfer of one line of information past the floating-gate amplifier.

Resettable Floating-Gate Amplifier

The charge packets from the horizontal transport register are sensed by a floating-gate whose potential changes linearly with the quantity of signal charge. The floating-gate is designed to be reset to the reset drain voltage V_{RD} by the reset clock, ϕ_{R} , after the completion of each horizontal line readout.

The output signal from the floating-gate drives a voltage amplification stage, is sampled and held under control of the sample clock ϕ_S by a sampling transistor switch and is buffered to the output terminal VIDEO_{OUT} through a larger MOS transistor. The resultant video output signal is a sampled-and-held clock-controlled analog signal representing the spatial distribution of the exposure level at the sensor surface.

Sampled Video Output (See Timing Diagram)

The output waveform of the CCD222 is shown in detail in the Timing Diagram. Each frame (488 horizontal lines) is delivered to the output in two sequential fields of 244 horizontal lines each. Each horizontal line is 380 elements long and is preceded by 4 pre-scan elements which contain no video information, but are representative of the dark current levels in the horizontal register.

DEFINITIONS OF TERMS

Charge-Coupled Device — A charge-coupled device is a monolithic silicon structure in which discrete packets of electronic charge are transported from position to position by sequential clocking of an array of gates. The charge packets are minority carriers (electrons) with respect to the p-type semiconductor substrate.

Photogate Clock $\phi_{\rm P}$ — The voltage waveform applied to the photogate.

Vertical Transport Clocks ϕ_{V1} , ϕ_{V2} — The clock signals applied to the vertical transport registers.

Horizontal Transport Clocks ϕ_{H1}, ϕ_{H2} — The clock signals applied to the horizontal transport register.

Resettable Floating-Gate Amplifier — The on-chip preamplifier which develops a signal voltage linearly proportional to the number of electrons contained in each sensed charge packet. The floating gate is coupled to the charge transport channel exclusively by electrostatic fields for low-noise signal detection.

Reset Clock ϕ_{R} — The clock applied to the gate of the reset switch to reset the voltage on the floating gate.

Sample-and-Hold Clock $\phi_{\rm S}$ — The clock applied to the sample-and-hold gate of the amplifier. (The sample-and-hold feature can be disabled by connecting $\phi_{\rm S}$ to V_{DD}).

Dynamic Range — The ratio of the saturation output voltage to the rms noise in the dark. The peak-to-peak random noise output of the device is 4-6 times the rms noise output.

Saturation Exposure — The minimum exposure level that will produce a saturated output signal. Exposure is equal to the product of light intensity and the integration time.

Spectral Response Range — The spectral band over which the response per unit of radiant power is more than 10% of the peak response.

Responsivity — The output signal voltage per unit exposure.

Photoresponse Shading Non-Uniformity — The difference of the response levels between the most and the least sensitive regions under uniform illumination (excluding blemished elements) expressed as a percentage of the average response. Shading is measured using the digital equivalent of a low-pass filter with a cut-off frequency of approximately 5 cycles per picture width or picture height in the video output line.

Dark Signal — The output signal in the dark caused by thermally generated electrons. Dark signal is a linear function of integration time and an exponential function of chip temperature.

Dark Signal Shading Non-Uniformity — The difference in the dark signal levels between the lowest and highest outputs from non-blemished elements in the dark. Shading is measured using the digital equivalent of a low-pass filter with a cut-off frequency of approximately 5 cycles per picture width or picture height in the video output line.

Saturation Output Voltage — The maximum useful output signal amplitude.

Integration Time — In this device, the integration time is equal to the frame period when used in the standard mode of operation.

Pixel — Picture element or sensor element — also called photoelement or photosite.

ABSOLUTE MAXIMUM RATINGS:

STORAGE TEMPERATURE	-100°C to +100°C
VOLTAGES:	
Pins 3, 4, 5, 6, 7, 20	-0.3V to +16V
Pins 2, 8, 9, 10, 11,	-10V to +15V
12, 13, 14, 17,	
18, 19, 21, 22	
Pin 1	$V_{SS} = 0V$
Pins 15, 16	NČ

Caution Note

The devices do not have built-in gate protection. It is crucial that static discharge be controlled and minimized. Care must be taken to avoid shorting pin VIDEO_{OUT} to V_{SS} or V_{DD} during operation of the device.

Dirty glass windows on devices cause increased photoresponse non-uniformity. Glass may be cleaned by saturating a cotton swab in alcohol and lightly wiping the surface. Rinse off the alcohol with de-ionized water. Allow the glass to dry, preferably by blowing with filtered dry N₂ or air.

DC OPERATING CONDITIONS AND CHARACTERISTICS: Devices are tested at nominal conditions except for V_{SF}, which is adjusted for individual sensors.

		Range				
Symbol	Parameter	Min	Nom	Max	Unit	Remarks
V _{DD}	DC Supply Voltage	12.0	15.0	16.0	v	
V _{AB}	Anti-Blooming Bias Voltage		12.0		v	
V _{SF}	Source of Floating-Gate Amplifier	4.0	7.0	10.0	v	Note 1
V _{RD}	Reset Drain Voltage		4.0		v	
TP ₁	Test Point		V _{DD}		v	
TP ₂ , TP ₃ , TP ₄	Test Points		0.0		v	
I _{DD}	DC Supply (V _{DD}) Current		3.5		mA	
I _{SF}	Current at Pin SF		50		μΑ	

CLOCK CONDITIONS: Devices are tested at clock conditions which result in optimized performance in Fairchild equipment. Clock voltages are within ranges shown.

		Range				
Symbol	Parameter	Min	Nom	Max	Unit	Remarks
V _{øPL}	Photogate Clock LOW		0.0		v	Note 2, 9
V _{øPH}	Photogate Clock HIGH	3.0	5.0	7.0	v	Note 2
V _{øBEL}	Bias Electrode of FGA Clock LOW	-3.0	0.0	0.0	v	
V _{øBEH}	Bias Electrode of FGA Clock HIGH	0.0	5.0	7.0	v	Note 1
V _{øH1L} V _{øH2L}	Horizontal Transport Clock LOW	-5.0	0.0	0.0	v	Note 3
V _{øH1H} V _{øH2H}	Horizontal Transport Clock HIGH	5.0	10.0	12.0	v	Note 1, 3
$V_{\phi V1L}$ $V_{\phi V2L}$	Vertical Transport Clock LOW	-6.0	0.0	0.0	v	Note 2, 9
V _{¢V1H} V _{¢V2H}	Vertical Transport Clock HIGH	5.0	7.0	12.0	v	Note 4
V _{øSL}	Sample-and Hold Clock LOW	-3.0	0.0	0.0	v	
V _{øSH}	Sample-and-Hold Clock HIGH	3.0	5.0	7.0	v	
V _{ØRL}	Reset Clock LOW	-6.0	0.0	0.0	v	
V _{øRH}	Reset Clock HIGH	5.0	7.0	12.0	v	
f _{øн1} f _{øн2}	Horizontal Transport Clock Frequency		7.2	20.0	MHz	Note 5

PERFORMANCE SPECIFICATIONS: Standard test conditions are TV format data output at a 30 Hz frame rate, 60 Hz field rate, 15.75 kHz line rate, 7.16 MHz pixel rate, $T_c = 25^{\circ}$ C. Light source is 2854°K incandescent with 2.0 mm thick Schott BG-38 IR reject filter.

		Range				
Symbol	Parameter	Min	Тур	Max	Unit	Condition
V _{SAT}	Saturation Output Voltage	200	700		mV _{P-P}	Note 6
DR	Dynamic Range		1000			See Definitions of Terms
SI	Saturation Irradiance		8.4		μW/cm²	See Table A
R	Responsivity		0.08		V/µWcm⁻²	
vo	Output DC Level	4	7	12	v	3KΩ load resistance
Р	Amplifier Power Dissipation			60	mW	3KΩ load resistance
Z	Output Impedance		1000		ohm	
CTF _H	Contrast Transfer Function, Horizontal	50	75		%	At 380 columns/ picture width
CTF _V	Contrast Transfer Function, Vertical	50	70		%	At 488 lines/ picture height
DSSNU	Dark Signal Shading Non-Uniformity		1	2	% V _{SAT}	See Definitions of Terms Note 7,8
PRSNU	Photo Response Shading Non-Uniformity		1	10	% V _{OUT}	See Definitions of Terms Note 7

NOTES

Adjustment is required within the indicated range for optimum operation.

2 $C_{\phi P} \simeq 16,000 \text{ pF}$

3

 $G_{\phi P} = 10,000 \text{ pr}$ $G_{\phi H1} = C_{\phi H2} \approx 200 \text{ pF}$ $G_{\phi V1} = G_{\phi V2} \approx 12,000 \text{ pF}$ Devices are tested at a clock rate of 7.2 MHz. This gives a standard NTSC rate of 30 frames per second. Higher clock rates are possible. Operation 4. 5. of the device at lower or higher frequencies will not damage the device. Two factors contribute to the fundamental low frequency limit: dark current contributions from the photosites and associated dark current non-uniformities, and dark current contributions in the register which will result in increased average dark signal at the output. The longer the integration time, the higher the spatial non-uniformities.

6. Measured with uniform light input.

7. Measurement excludes single point blemishes, line and column defects and outer edge elements on a line or field basis.

8.

DSSNU increases in amplitude by a factor of 2X for each 7-10 degree (C) increase in chip temperature. Minimum increase of DSSNU for certain arrays results when the low level for these clock signals is between 0 and -6V with respect to V_{SS} . 9.

TABLE A

TYPICAL SATURATION IRRADIANCE LEVELS OF CCD222 AT 30 FRAMES/SEC.

Source Spectrum	Radiometric	Photo	metric ^d
2854°K, unfiltered ^a	15 μW/cm ²	3.3 lux	0.30 fc
2854°K + 900nm cutoff filter ^b	6.0 μW/cm²	9 lux	0.9 fc
2854°K + 700nm cutoff filter ^c	8.4 μW/cm ²	25 lux	2.4 fc
Monochromatic, 600nm	7.0 μW/cm²	-	_

NOTES

- $1 \,\mu W/cm^2 = 0.22 \,lux.$ a.
- b.
- 1 μW/cm² = 1.5 lux. The 900nm cutoff filter blocks wavelengths above approximately 900nm. Used was a Corning 1-75 glass filter 3mm thick. 1 μW/cm² = 3.0 lux. The 700nm cutoff filter blocks wavelengths above approximately 700nm. Used was a Schott BG-38 glass filter 2mm thick. C.

1 fc = 10.76 lux. h

CCD222

COSMETIC PERFORMANCE SPECIFICATIONS

The CCD222 is available in three cosmetic quality grades. The CCD222A is a very high performance device intended for use in broadcast quality camera systems and in the most demanding industrial and scientific applications. The CCD222B is a high grade device selected for applications requiring excellent image reproduction including visual monitoring, surveillance and other video communication systems. The CCD222C is a medium grade device intended for use in applications where less stringent blemish criteria are permissible; for example, in systems which employ computer-based circuitry for analysis of sensor data. A CCD222 element is considered to be blemished if it exhibits a spurious output (in comparison to its nearest neighbors) of more than 10% of V_{SAT} . Blemish content is determined in the dark, and at an illumination level of 50% V_{SAT} . Single-point Blemishes (SPB's) and column-oriented blemishes (vertical lines) are sometimes found in CCD222 sensors; horizontal line defects are rarely found because of Fairchild's choice of device structure. SPB and column defect locations are random in the CCD222.

Devices exhibiting superior or less stringent performance and/or cosmetic specifications than those defined by classes A, B, or C may be obtainable by negotiation. For further information, please call your nearest Fairchild Sales Office.

BLEMISH SPECIFICATIONS FOR CCD222: (Measured at T_A = 25°C and at uniform light levels developing 0, 25 and 50% of V_{SAT}.)

Characteristic	CCD222A Max	CCD222B Max	CCD222C Max	
Number of Single Point Blemishes	5	100	200	
Largest SPB Dimension	2	3	5	contiguous pixels
Number of Blemished Pixels in SPB's	10	100	200	
Number of Column Defects	0	4	6	
Widest Column Defect Width	0	2	2	adjacent columns
Number of Defective Columns	0	4	8	

OUTPUT WAVEFORM (VIDEO OUT) UNDER UNIFORM ILLUMINATION (= 50% VSAT)

TYPICAL PERFORMANCE CURVES

OUTPUT SIGNAL LEVEL VERSUS INTEGRATION TIME 2854°K TUNGSTEN SOURCE WITH SCHOTT BG-38 FILTERS

the sector in the sector is a sector of the sector of the

.

CCD222

ORDER INFORMATION

To order the CCD222, please follow the ordering codes listed in the table below:

Description	Device Type Order Code
CCD222 Class A Blemish Spec.	CD222ADC
CCD222 Class B Blemish Spec.	CD222BDC
CCD222 Class C Blemish Spec.	CD222CDC

CCD222 is also available as an integral part of complete solid-state camera systems. For further information call your local Fairchild sales office, representative, or distributor.

APPLICATION NOTE

OPERATION OF THE CCD222 IN THE

NON-INTERLACED MODE

Normal operation of the CCD222 device produces two vertically interlaced fields per frame. This interlaced mode of operation is the highest resolution mode; it is the only way to obtain 488 TV lines of resolution vertically from the CCD222.

This Application Note describes how, by sacrificing half of the vertical resolution, the CCD222 device can be operated in the non-interlaced mode. In this non-interlaced mode each picture element (pixel) consists of a pair of the normal pixels, one located just above the other. Thus the new pixels have a vertical spacing of 36µm and the normal horizontal spacing of 30µm.

For applications involving image analysis, pattern recognition, etc., the non-interlaced mode may be advantageous. Not only is there the advantage that any small portion of the raster is scanned all at once, but the new pixel is more nearly square (5:6 aspect ratio) than is the normal one (3:5 aspect ratio).

The only difference in the clock drive signals from normal two-field-per-frame operation is that the two vertical transport clocks, ϕ_{VI} and ϕ_{V2} , must be modified in waveform so that, during each photogate <u>LOW</u> pulse, both are in the <u>HIGH</u> state. This moves all of the charge packets from their respective pixel locations into separate sites in the vertical shift registers. Following this step, when the first vertical transport clock goes <u>LOW</u>, the charge packets pair up as half of them move from the <u>LOW</u> phase upward into the adjacent <u>HIGH</u> phase. After this, everything proceeds normally until the next photogate <u>LOW</u> pulse.

> R. H. Dyck 6/29/82

OPERATION OF THE CCD222 IN A THREE-FIELD-PER-FRAME

MODE FOR HIGH-ENERGY APPLICATIONS

The CCD222 can be used for imaging electrons (\gtrsim 5 KeV), x-rays and other high energy particles, provided that it is procured without a window. However, in general, there is a problem due to the fact that the aluminum opaquing over the column registers is not opaque to these particles. Therefore, special precautions or special modes of operation are required. The mode of operation described here is of interest in that it recovers the maximum amount of image information.

This mode of operation is best thought of as a "snap-shot" mode. First, the frame clock and vertical clocks are stopped, then the shutter or particle gate is opened briefly and closed again. At this time, the stored signal consists of a 488x380 array of charge packets in the photoelement sites plus a 244x380 array of charge packets in the vertical registers. Next, one field is scanned out of the device in normal fashion, but the frame clock is not pulsed first. This extracts the 244x380 field of information originating in the vertical registers. Next, the two-field frame is scanned out in normal fashion. Finally, the clocks are stopped to complete the cycle. The configuration of the three charge-collection areas in the unit cell is shown in the figure.

The clock drive conditions recommended for this mode are as follows:

During the "snap-shot", the frame clock, ϕP , and first vertical clock, $\phi V1$, are high and the second vertical clock, $\phi V2$, is low. (The horizontal clocks should be clocked if this period is more than one line-time.) All other clocking requirements are given in the CCD222 data sheet.

This mode of operation achieves the following:

- 1. 100% active area
- 2. Full vertical resolution
- 3. Twice the normal horizontal resolution

If the application is such that two or more "snap-shots" may be combined to produce the final image, then a similar six-fieldper-frame mode of operation is the mode which recovers maximum information. The six-field-frame is made up of a three-field sequence as described above together with a second three-field sequence which is identical to the first except for the first field. In this second sequence, the vertical clocks are stopped 180 degrees out of phase from the first, resulting in a halfunit-cell shift of the center of the picture elements for the vertical registers.

OPERATION OF THE CCD222 IN A THREE-FIELD-PER-FRAME

MODE FOR HIGH-ENERGY APPLICATIONS

UNIT CELL CONFIGURATION IN THE CCD222 INDICATING THE THREE CHARGE COLLECTION AREAS

C00412

79

CCD IMAGING AND SIGNAL PROCESSING

The capability to manipulate information in the form of discrete charge packets makes CCD technology ideal for analog signal processing.

Fairchild signal processing components are monolithic silicon structures comprised of CCD analog shift registers, charge injection ports, and output charge-sensing amplifiers. They can be advantageously used for delay and temporary storage of analog video signals. The time delay

CCD321A Variable Analog Delay Line 455/910 Bit

Th CCD321A is an electrically variable analog delay line intended to be used in analog signal processing systems that include delay and temporary storage of analog information. The CCD321A consists of two 455-bit analog shift registers, each with its own charge injection port, transport clock and output port allowing the device to be used as two 455 or one 910-bit analog delay line.

The CCD321A can be used in applications ranging from video frefrequencies to audio frequencies.

for data transit through the CCD register is precisely controlled by the frequency of the externally supplied transport clock signal. Fairchild signal processing components include a sample-and-hold signal output stage for ease of application.

Fairchild video delay modules are printed circuit board structures which include the CCD321A2 device and are sold as fully assembled and calibrated units. The module is equipped for use as a variable delay

A complete TV line of 63.5 µs can be stored with a sampling frequency of 14.318 MHz (four times color subcarrier frequency of 3.58 MHz). Applications in video systems include time base correction, comb filtering and signal-to-noise enhancing. Audio applications include variable delay of audio signals, reverberation effects in stereo equipment, tone delay in organs and musical instruments as well as voice scrambling applications. The CCD321A also finds applications in time base compression and expansion applications where analog data can be fed at one rate to the device, the clocks can be

circuit, using either an externally supplied or internal variable frequency clock, or for temporary analog data storage in a stopped-clock mode.

Signal Processing

Products

Typical applications for the CCD signal processing components and modules include time base correction for video tape recorders, fast inputslow output data expansion systems for A-D converter systems, comb filter realizations, drop-out compensators, and other analog applications up to frequencies of 30 MHz data rate.

temporarily stopped and then data clocked out at a different rate. The CCD321A is available in four

1110 00000					
different classes as follows:					
Device	Application				
CCD321A-1	Broadcast quality				
	video delay line				
CCD321A-2	Industrial video delay				
	line				
CCD321A-3	Time base compres-				
	sion and expansion				
	delay line				
CCD321A-4	Audio delay line				

CCD321A Features

- · Electrically variable analog delay line for audio and video applications
- 1 H video delay line capability with broadcast quality performance.
- · Excellent bandwidth at video and audio rates due to buried channel technology.
- · Wide range of data rate: From 10 kHz to 20 MHz per 455 section.
- High signal to noise ratio Video: 58 dB, Audio: 65 dB.

CCD321A - Block Diagram

Signal Processing Products

IMAGING

CCD323A Video Delay Line With On-Chip Drivers 283 ½-Bit

The CCD323A is a 283 ½-bit, dual channel, high speed video delay line with on-chip clock drivers and logic circuits greatly simplifying external

CCD323A Features

- Electrically variable analog delay line.
- 64 μsec. at 4.4 MHz clock rate (PAL TV).
- On-chip clock circuits. Requires one external clock. Simplifies external circuit design.
- Excellent bandwidth at video data rates due to buried channel technology.
- Wide range of data rates: From 10 kHz to 15 MHz.
- High signal to noise ratio.

CCD321M Video Delay Module

The CCD321M is a complete delay module intended for use in video signal processing systems where precisely controlled delay or temporary storage of analog information is required. The module is a printed circuit board containing a Fairchild CCD321 dual 455-bit analog shift register, input and output signal processing circuitry, and the required clocking signal sources and bias voltage controls. The module requires a single +20 V power supply input for operation.

CCD321M Features

- 1 H delay line performance
- Electrically variable delay
- Adjustable delay by clock control
- Wide signal bandwidth 5 MHz
- High S/N ratio 55 dB
- Dual 455-bit or single 910-bit delay
- No drift delay dependent on clock frequency
- · Internal or external clocking
- Temporary storage operation controlled by a single TTL input line
- Single polarity power supply + 20 V

circuit design. Only one TTL level clock is required by the user to operate the device, thereby saving many external components as well as board space.

With 283 1/2 -bits length and clock-

ing done at \simeq 4.4 MHz, the device produces a delay of \simeq 64 µsec. to ideally suit PAL TV applications. However, the device is useful in many high speed applications using a delay line shorter than the CCD321A.

CCD323A - Block Diagram

The delay time of analog signals through the CCD321M is precisely controlled by the clock signal frequency which can be provided by an external source or obtained from an internal VCO. The CCD321M can be used as a 910-bit one horizontal line (1 H) delay for TV video bandwidths of 5 MHz when operating with a $4 \times 3.58 = 14.3$ MHz clock frequency, serve as a temporary analog store for a full-bandwidth TV line, or can be used as an adjustable delay by controlling either the internally generated or external input clock.

The CCD321M can also be used as two 455-bit registers for delay of two independent analog signals.

Typical video applications for the CCD321M include time-base correctors, video re-synchronizing systems, comb filter realizations, moving target indicators and signalto-noise enhancement systems. Other applications include time-base compression and expansion systems, phase delay equalizers and general purpose analog delay.

Fairchild cannot assume responsibility for use of any circuitry described other than circuitry embodied in a Fairchild product. No other circuit patent licenses are implied. Manufactured under one or more of the following U.S. patents: Nos. 3.931.674, 3.865,067,4.097.865, 3.866,144, 3.985.022, 4.035,821, and 3.999.062; other patents pending. Fairchild reserves the right to make changes in the circuitry or specifications at any time without notice. IA-37099/7500.

CCD321A 455/910-BIT ANALOG SHIFT REGISTER CHARGE COUPLED DEVICE

GENERAL DESCRIPTION — The CCD321A is an electrically variable analog delay line intended to be used in analog signal processing systems that include delay and tempor-

intended to be used in analog signal processing systems that include delay and temporary storage of analog information. The CCD321A consists of two 455-bit analog shift registers, each with its own charge injection port, transport clock and output port allowing the device to be used as two 455 or one 910-bit analog delay line.

The CCD321A can be used in applications ranging from video frequencies to audio frequencies. A complete TV line of 63.5 µs can be stored with a sampling frequency of 14.318 MHz (four times color subcarrier frequency of 3.58 MHz). Applications in video systems include time base correction, comb filtering and signal-to-noise enhancing. Audio applications include variable delay of audio signals, reverberation effects in stereo equipment, tone delay in organs and musical instruments as well as voice scrambling applications. The CCD321A also finds applications in time base correction, et also finds applications in time base corrections, the ccD321A also finds applications in time base correction, the clocks can be temporarily stopped and then data clocked out at a different rate.

The CCD321A is an improved pin-for-pin replacement for the CCD321. The CCD321A is available in four different classes as follows:

.

DEVICE	APPLICATION
CCD321A-1	Broadcast quality video delay line
CCD321A-2	Industrial video delay line
CCD321A-3	Time base compression and expansion delay line
CCD321A-4	Audio delay line

ELECTRICALLY VARIABLE ANALOG DELAY LINE FOR AUDIO AND VIDEO APPLICATIONS

- 1 H VIDEO DELAY LINE CAPABILITY WITH BROADCAST QUALITY PERFORMANCE. • EXCELLENT BANDWIDTH AT VIDEO AND AUDIO RATES DUE TO BURIED CHANNEL TECHNOLOGY.
- WIDE RANGE OF DATA RATE: FROM 10 kHz TO 20 MHz PER 455 SECTION.
- HIGH SIGNAL TO NOISE RATIO VIDEO: 58 dB, AUDIO: 65 dB.

BLOCK DIAGRAM

_ _... _ _

CONNECTION DIAGRAM 16-PIN DIP (TOP VIEW)

VOA		16 VDD
v _{GG} [2	15 🛛 Уов
	3	14 1 V2
	4	13 ViB
¢sa	5	12 VRB
¢1A	6	11 Ø ØSB
¢RA □	7	10] Ø1B
vss 🗖	8	9 Ø Ø RB

PIN NAMES
Analog Shift Register Transport Clocks
Input Sampling Clocks
Output Sample and Hold Clocks
Analog Shift Register DC Transport Phase
Analog Inputs
Analog Reference Inputs
Analog Outputs
Output Drain
Signal Ground
Substrate Ground

FUNCTIONAL DESCRIPTION — The CCD321A consists of the following functional elements illustrated in the Block Diagram:

Two Charge Injection Ports — The analog information in voltage form is applied to two input ports at V_{IA} (or V_{IB}). Upon the activation of the analog sample clocks ϕ_{SA} (or ϕ_{SB}) a charge packet linearly dependent on the voltage difference between V_{IA} and V_{RA} (or V_{IB} and V_{RB}) is injected into analog shift register A (or B).

Two 455-Bit Analog Shift Registers — Each register transports the charge packets from the charge injection port to its corresponding output amplifier. Both registers are operated in the 1-1/2 phase mode where one phase (ϕ_{1A} or ϕ_{1B}) is a clock and the other phase (V_2) is an intermediate dc potential. Phases ϕ_{1A} and ϕ_{1B} are completely independent. V_2 is a dc voltage common to both registers.

Two Output Amplifiers – Charge packets from each analog shift register are delivered to their corresponding output amplifier as shown in the circuit diagram. Each output amplifier consits of three source follower stages with constant current source bias. A sample and hold transistor is located between the second and third stage of the amplifier. When the gate of the sample and hold transistor is clocked (ϕ_{RA} or ϕ_{RB}) a continuous output waveform is obtained as shown in the timing diagrams. The sample and hold transistor can be defeated by connecting ϕ_{RA} and/or ϕ_{RB} to V_{DD} . In this case the output is a pulse modulated waveform as shown in the timing diagram.

MODES OF OPERATION - The CCD321A can be operated in four different modes:

455-Bit Analog Delay — Either 455-bit analog shift register can be operated independently as a 455-bit delay line. The driving waveforms to operate shift register A is shown in Fig. 10. The input voltage signal is applied directly to V_A. The input sampling clock ϕ_{SA} samples this input voltage and injects a proportional amount of charge packet into the first bit of register A. The input voltage A1 which is sampled between t = 0 and t = t_c appears at the output terminal VoA @ t = 910t. If the sample and hold circuit is not used then the output appears as a pulse amplitude modulated waveform as shown in the diagram. In that case ϕ_{FA} (pin 7) should be connected to V_{DD} (pin 16). If the sample and hold circuit is used than the output appears as a continuous waveform. Here ϕ_{FA} (pin 7) should be clocked coincident with ϕ_{SA} (pin 5) and the two pins can be connected to gether.

Analog shift register B can be operated in an analogous manner with V_{IB} as the analog input, ϕ_{1B} as the transport clock, ϕ_{SB} as the input sampling clock and ϕ_{BB} as the output sample and hold clock.

910-Bit Analog Delay in Series Mode — The two analog shift registers A and B can be connected in series to provide 910 bits of analog delay as shown in the schematic below. The analog signal input voltage is applied to V_{IA} . The output of register A is connected to the input of register B with a simple emitter follower buffer stage. In order to insure proper charge injection of register B, VAB should be adjusted. The timing diagram shown in Fig. 10 applies in this mode of operation. Here $\phi_{IA} = \phi_{B}$, $\phi_{SA} = \phi_{SB}$, $\phi_{RA} = V_{DD}$, and ϕ_{RB} is clocked.

910-Bit Analog Delay in Multiplexed Mode — The two analog shift registers can be connected in parallel to provide 910-bit of analog delay as shown in the schematic below. The analog signal input voltage is applied to both V_{IA} and V_{IB} . The outputs at V_{OA} and V_{OB} can be combined as shown in Fig. 8 to recover the analog input information.

The necessary waveforms to operate the device in this mode is shown in Fig. 11. In this case ϕ_{SA} samples the analog input A₁ at V_{IA} between t=0 and t=2t_c. The output corresponding to A₁ appears at V_{OA} at t=910t_c. The output corresponding to B₁ appears at V_{OB} @ t=911t_c. This mode of operation results in an effective sampling rate of twice the rate of ϕ_{IA} , ϕ_{IB} , ϕ_{SB} , and ϕ_{SB} .

Stop/Start Mode Operation — The charge packets in the two analog shift registers can be held stationary by stopping ϕ_{1A} and ϕ_{1B} in their LOW state. ϕ_{SA} , ϕ_{SB} , ϕ_{RA} , and ϕ_{RB} can also be stopped in the LOW state or kept clocking as usual. The two shift registers should not be connected in series in the stop-start mode of operation.

The CCD321A is available in four different classes for different applications. The CCD321A-1 is a high quality broadcast 1H delay line for video systems with 1% differential gain and 1° differential phase. The CCD321A-2 is a high quality video delay line with 3% differential gain and 3° differential phase. The CCD321A-3 is tested in the START/STOP mode of operation and parameters are guaranteed in this mode. The CCD321A-4 is tested at audio speeds; audio parameters are specified and guaranteed. The dc and clock characteristics of the four classes are the same. The ac characteristics vary as shown below.

Caution: The device has limited built-in gate protection. Charge build-up should be minimized. Care should be taken to avoid shorting pins V_{OA} and V_{OB} to ground during operation of the device.

OVMEN	CHARACTERISTICS		RANGE		UNITO	CONDITIONS	
STMBUL		MIN	TYP	МАХ			
VDD	Output Drain Voltage	14.5	15.0	15.5	V		
V ₂	Analog Shift Register DC Transport Phase Voltage		6.0		v	Note 1	
VRA, VRB	Analog Reference Inputs Voltage		3-7		V	Note 2	
Vgg	Signal Ground		0.0				
Vss	Substrate Ground		0.0			Note 3	
VIA, VIB	Input DC Level		3-7		v	Note 2	
Voa, Vob	Output DC Level		6-11		V	V _{DD} = 15 V	
RIN	Small Signal Input Resistance		1.0		MΩ	Resistance from Pins 3, 4, 12 or 13 to V _{SS} . $V_{IA} = V_{IB} = 3 V$	
Cin	Small Signal Input Capacitance		10		pF	Capacitance from Pins 3, 4, 12 or 13 to V _{SS} . $V_{IA} = V_{IB} = 3 V$	
Rout	Small Signal Output Resistance		250		Ω	V _{DD} = 15 V	
ODM	Output DC Mismatch Between A & B Registers		±1		v		
OAM	Output AC Mismatch Between A & B Registers		±20		%		

DC CHARACTERISTICS: T_A = 55°C, Note 16

CLOCK CHARACTERISTICS: TA = 55°C, Note 16

SVMBOI	CHARACTERISTICS		RANGE			001101710110
STMBOL		MIN	ТҮР	MAX	UNITS	CONDITIONS
Vø1AL, VØ1BL	Analog Shift Register Transport Clocks LOW	0	0.5	0.8	v	Note 4
Vφ1ah, Vφ1bh	Analog Shift Register Transport Clocks HIGH	12.0	13.0	15.0	v	Note 4
Vøsal, Vøsbl	Input Sampling Clocks LOW	0	0.5	0.8	v	Note 5
Vфsah, Vфsbh	Input Sampling Clocks HIGH	12.0	13.0	15.0	v	Note 5
Vøral, Vørbl	Output Sample and Hold Clocks LOW	0	0.5	0.8	v	Note 6
Vфrah, Vфrbh	Output Sample and Hold Clocks HIGH	12.0	13.0	15.0	v	Note 6
fø1A,fø1B	Analog Shift Register Transport Clock Frequency	0.02		20	MHz	See Note 17
føsa,føsb	Input Sampling Clocks Frequency	0.02		20	MHz	See Note 17
føra,førb	Output Sample and Hold Clocks Frequency	0.02		20	MHz	See Note 17

ABSOLUTE MAXIMUM RATINGS

Storage Temperature Operating Temperature All Pins with Respect to V_{SS} -25°C to 100°C -25°C to 55°C -0.3 V to 18 V

CCD321A-1 AC CHARACTERISTICS: $T_A = 55^{\circ}C$. Both registers in the multiplexed mode, Clock Rate = 7.16 MHz. Sampling Rate = 14.32 MHz. Vout = 700 mV. (See Test Load Configuration, Figure 8)

CVMPOL	CHARACTERISTIC		RANGE			CONDITIONS
STMBOL		MIN	TYP	MAX	UNITS	CONDITIONS
BW	Signal Bandwidth (3 dB Down)	5.0			MHz	Note 7
IG	Insertion Gain	0	3.0	6.0	dB	Note 8
ΔG	Differential Gain			1.0	%	Note 9
$\Delta \phi$	Differential Phase			1.0	degree	Note 9
S/N	Signal-to-Noise Ratio	58			dB	Note 10
VI (max)	Maximum Input Signal Voltage		1.0		Vpk-pk	

CCD321A-2 AC CHARACTERISTICS: $T_A = 55^{\circ}$ C. Both registers in the multiplexed mode, Clock Rate = 7.16 MHz, Sampling Rate = 14.32 MHz. Vout \approx 700 mV. (See Test Load Configuration, Figure 8)

014400			RANG	:		CONDITIONS
SYMBOL	CHARACTERISTIC	MIN	TYP	МАХ	UNITS	
BW	Signal Bandwidth (3 dB Down)	4.2	5.0		MHz	Note 7
IG	Insertion Gain	0	3.0	6.0	dB	Note 8
ΔG	Differential Gain			3.0	%	Note 9
Δφ	Differential Phase			3.0	degrees	Note 9
S/N	Signal-to-Noise Ratio	58			dB	Note 10
Vi (max)	Maximum Input Signal Voltage		1.0		Vpk-pk	

CCD321A-3 AC CHARACTERISTICS: $T_A = 55^{\circ}C$. Both registers in the multiplied mode, Clock Rate = 7.16 MHz, Sampling Rate = 14.32 MHz. Clocks are stopped for 300 μ s. Vout \approx 700 mV after 4.2 MHz low pass filter. (See Test Load Configuration, Figure 8)

	CHARACTERISTIC		RANGE			
SYMBOL		MIN	TYP	мах	UNITS	CONDITIONS
BW	Signal Bandwidth (3 dB Down)	4.2	5.0		MHz	Note 7
IG	Insertion Gain	0	3.0	6.0	dB	Note 8
ΔG	Differential Gain			3.0	%	Note 9
$\Delta \phi$	Differential Phase			3.0	degrees	Note 9
S/N	Signal-to-Noise Ratio	55	1		dB	Note 10
SN	Spacial Noise		10.0	20.0	mV	Notes 11, 12
VI (max)	Maximum Input Signal Voltage		1.0		Vpk-pk	

CCD321A-4 AC CHARACTERISTICS: TA = 45°C. For each register, Data Rate = 50 KHz. (See Test Load Configuration, Figure 9) Vout ≅ 1 V

SYMBOL	CHARACTERISTIC		RANGE			CONDITIONS
		MIN	TYP	MAX	UNITS	
BW	Signal Bandwidth (3 dB Down)	23	25		kHz	Note 7
IG	Insertion Gain	0	3.0	6.0	dB	Note 8
THD	Total Harmonic Distortion		0.5	1.0	%	Note 13
S/N	Signal-to-Noise Ratio	60	65		dB	Note 14
V1 (max)	Maximum Input Signal Voltage		1.0		V _{pk-pk}	
RSO	Rate of Average Signal Offset		15		mv/ms	Note 15

NOTES:
1. Ve level should be 1/2 of the *φ*_{1A} or *φ*_{2A} HIGH level. Adjustment in the range of ±1 V may be necessary to maximize signal bandwidth.
2. Signal charge injection is proportional to the difference V, and Va. Adjustment of either V, or Va is necessary to assure proper operation.
3. Negative transients below ground of 1 star is eand fail times of the clocks may cause charge injection from substrate to the shift registers. Anegative bias on Vss of -20 to -5.0 Vdc will eliminate the injection phenomenon.
4. Cela = 0.0 pt = 0.0

SIGNAL TO NOISE RATIO -dB

peak

DIFF

TYPICAL AUDIO PERFORMANCE CURVES

TEST LOAD CONFIGURATION FOR MILTIPLEXED OPERATION IN VIDEO

TEST LOAD CONFIGURATION FOR SINGLE REGISTER OPERATION IN AUDIO AND VIDEO

Fig. 9

NOTE: This timing diagram also applies for shift register B. In this case, ϕ_{1A} becomes ϕ_{1B} , ϕ_{SA} becomes ϕ_{SB} , V_{IA} becomes V_{IB} and V_{OA} becomes V_{OB}

18

5.0

ns

Fig. 11 Analog Shift Register A and B Operation in the Multiplexed Mode

_

ORDERING INFORMATION

To order the CCD321A specify the "device type" as shown below:

CLASS, APPLICATION	DEVICE TYPE
CCD321A-1, Broadcast quality video	CCD321A1
CCD321A-2, Industrial quality video	CCD321A2
CCD321A-3, Time base compression and expansion	CCD321A3
CCD321A-4, Audio delay line	CCD321A4

Also available from Fairchild is a fully-assembled module that contains all the necessary circuitry to operate the CCD321A. The module is designed to help the system designer become familiar with the operation of the device, and for use in OEM systems.

The CCD321VM is a video module using a CCD321A-3. The module includes the necessary electronics to perform time base compression and expansion, and variable video signal delay. The module requires a single power supply for operation.

Schematics and component layouts are included in the shipping packages for the CCD321VM. For further information on the CCD321VM please contact your nearest Fairchild sales office or distributor or call 415-962-3941.

PACKAGE OUTLINE

16-Pin Side Brazed

NOTES: All dimensions in inches (bold) and millimeters (parentheses) Header is black ceramic (Al_2O_3) Pins are gold-plated kovar Top cover connected to pin 8 (Vss substrate)

CCD321M VIDEO DELAY MODULE CHARGE COUPLED DEVICE

GENERAL DESCRIPTION - The CCD321M is a complete delay module intended for use in video signal processing systems where precisely controlled delay or temporary storage of analog information is required. The module is a printed circuit board containing a Fairchild CCD321 dual 455-bit analog shift register, input and output signal processing circuitry, and the required clocking signal sources and bias voltage controls. The module requires a single + 20 V power supply input for operation.

The delay time of analog signals through the CCD321M is precisely controlled by the clock signal frequency which can be provided by an external source or obtained from an internal VCO. The CCD321M can be used as a 910-bit one horizontal line (1H) delay for TV video bandwidths of 5 MHz when operating with a 4 X 3.58 = 14.3 MHz clock frequency,serve as a temperary analog store for a full-bandwidth TV line, or can be used as a adjustable delay by controlling either the internally generated or external input clock. The CCD321M can also be used as two 455-bit registers for delay of two independent analog signals.

Typical video applications for the CCD321M include time-base correctors, video re-synchronising systems, comb filter realizations, moving target indicators and signal-to-noise enhancement systems. Other applications include time-base compression and expansion systems, phase delay equalizers and general purpose analog delay.

- 1 H DELAY LINE PERFORMANCE
- ELECTRICALLY VARIABLE DELAY
- ADJUSTABLE DELAY BY CLOCK CONTROL
- o WIDE SIGNAL BANDWIDTH 5 MHz
- HIGH S/N RATIO 55 dB
- DUAL 455-BIT OR SINGLE 910-BIT DELAY
- NO DRIFT DELAY DEPENDENT ON CLOCK FREQUENCY
- INTERNAL OR EXTERNAL CLOCKING
- TEMPORARY STORAGE OPERATION CONTROLLED BY A SINGLE TTL INPUT LINE
- SINGLE POLARITY POWER SUPPLY +20 V

BLOCK DIAGRAM

FUNCTIONAL DESCRIPTION Dual 455-Bit Analog Shift Register: CCD321

The Fairchild CCD321 is a monolithic 455/910-bit charge coupled device analog shift register packaged in a 16-pin dual in-line package. Functionally this device employs discrete electronic charge packets representing the sampled amplitudes of two analog input voltage waveforms that are transported towards output charge sensing amplifiers by a 1-1/2 phase digital clock signal. An integrated sample and hold output stage provides register output waveforms which are a near-replicas of the signals input to the device 455 periods earlier. (See CCD321 Data Sheet for more details concerning this device)

Clocking Logic and Driver Circuits

The transport and sampling clock pulses required for control of the CCD shift register are generated at TTL levels and then amplified and waveshaped by clock line drivers. A transport and a sample pulse for register A of the CCD321 is triggered by each LOW-to-HIGH transition of the master clock input to the CCD321M; a clock pair for register B is triggered by each LOW-to-HIGH clock input transition. Analog information is thus made to travel completely through both sides of the shift register by 455 complete cycles of the input clock.

Storage Logic

A TTL HIGH level on the Enable input terminal of the CCD321M is synchronized to the transport clock pulses and stops the transport and sampling functions of the register. The analog data in the registers when the clocks are stopped is stored until the Enable line returns LOW, and then transported out in the usual manner.

Signal Processing

Signal inputs to the A and B registers of the CCD321 are gain-controlled by individual potentiometers and then ac coupled through 22 μ F capacitors into 100 K Ω loads at the device inputs. Two emitter-followers provide the sampled and held register A and register B output wave-forms at a 75 Ω source impedance level.

If the two signal input terminals are connected together, the input data is sampled twice during each clock cycle. Alternate sampled analog bits go in sequence to the two registers of the CCD321. These alternating samples are de-multiplexed at the register output, low pass filtered, and given to a third video output lead. A 910-bit resolution is thus obtained, giving a signal delay of 455 clock periods or 910 clock half cycles. This multiplex operating mode provides 63.5 µs delay for a 5 MHz bandwidth signal using a clock input frequency of 2 x 3.58 MHz = 7.16 MHz, equivalent to a 14.3 MHz sampling and transport rate.

Clock Oscillator

The internal clock generator of the CCD321M is a VCO which can be controlled over a 5 to 20 MHz range by an external 0 to 5 Vdc signal. or adjusted by an on-board potentiometer. An external TTL compatible square wave clock signal can also be used by optional connector wiring.

Bias Control

Power input to the CCD321M is from a nominal +20 V external supply. On-board regulators control bias voltages for the CCD321, drivers, and logic circuitry.

DC CHARACTERISTICS

SYMBOL	PARAMETER	UNIT	CONDITIONS	MODULE PIN NUMBER
Vcc	Power Supply Input	+20 Vdc (< 400 mA)	Note 1	A&1
VGG	Common Ground	0 V	-	All unused pins
VIA	Input to A side of CCD321	500 mV peak-to-peak	-	4
VIB	Input to B side of CCD321	500 mV peak-to-peak		6
VOA	Output of A side of CCD321	500 mV peak-to-peak	$R_L = 1 k\Omega$	8
VOB	Output of B side of CCD321	500 mV peak-to-peak	RL = 1 kΩ	10
vом	Multiplexed Output	500 mV peak-to-peak 300 mV peak-to-peak	$R_{L} = 1k\Omega$ $R_{L} = 75\Omega$	12
fin	Clock In	TTL Square Wave 0 – 25 MHz	Note 2	z
four	Internal Clock	TTL Square Wave 5 – 20 MHz		22
τ	Input to Output Delay	455 fin	Single register or multiplex mode of operation	
		910 fin	Series mode of operation	
HOLD	Hold Control (Enable Input)	TTL Levels		20
VCO (IN)	VCO Control Input	0 - 5 Vdc		W
VCO(INT)	VCO Internal Control	0 - 5 Vdc		19

AC CHARACTERISTICS: T_A = 25°C, Multiplexed Mode of Operation, f_{IN} = 7.16 MHz V_{IA} = V_{IB} = 500 mV peak-to-peak, τ = 63.5 μ s, See Note 3

SYMBOL	PARAMETER	VALUE	CONDITIONS		
BW	Bandwidth (3 dB down)	5 MHz Min			
ΔG	Differential Gain	n 2.5%Max			
$\Delta \phi$	Differential Phase	2.5° Max	Note 4		
THD	Total Harmonic Distortion	2% Max	Note 5		
S/N	Signal to Noise Ratio	55 dB Min Not			
т	Tilt of 60 Hz Square Wave	1% Max			
F	Band Pass Flatness: To 3.58 MHz	1 dB			
Offset	DC Offset in Temporary Storage Mode	2.5 mV/ms	Note 7		

NOTES:

1. Module operates from 19 to 24 Vdc.

f_{IN} is the clock of a single register. In the series or independent register mode, a sampling clock of 4X the signal bandwidth is usually required. In the multiplex mode, a sampling clock of 2X the signal bandwidth is required. (i.e, in the multiplex mode of operation, with f_{IN} = 10 MHz per side a 5 MHz (30B) bandwidth can be processed through the device.)

AC parameters guaranteed from 0°C to 55°C. Delay tolerances determined by stability of clock frequency.
 Measured on a Tektronics 520 VECTORSCOPE.

Measured on a lexitonics 520 VECTORSCOPE.
 Using FN = 10 MHz, multiplexet mode, Vig = Vig = 500 mV peak-to-peak, 1 MHz sine wave. Measurement done using spectrum analyzer.
 Using Rhode and Schwartz noise meter at 4.2 MHz bandwidth.
 This is a dc offset on the output signal which can occur because of dark current build-up when in hold mode. This offset can be expected to double for each 8-10°C increase in the CCD321 junction temperature.

Modes of Operation and Connection Diagrams

The CCD321M can be operated in various modes: (1)Two independent 455-bit analog registers, (2) multiplex, (3) series and (4) temporary analog storage. An on-board generated clock with adjustable frequency, and internal VCO controlled clock or an independent externally generated clock input can be used in any of the four modes. The circuit diagram shown below shows the pin nomenclature for the CCD321M.

The following diagrams represent the correct input/output connections for proper operation of the CCD321M in the various modes. The CCD321M circuit diagram is included in the module shipping package.

Mode 1: Internal Clock, Adjustable Frequency (R1)

Mode 3: External Input Clock

Mode 4: Two Register Parallel Delay

Notes:

 Depending on requirements, connect pins Z, W, 19 and 22 for internal or external clocking as shown in Modes 1, 2 and 3.

2. Delay =
$$\frac{455}{f_{IN}}$$

Mode 5: Multiplexed Mode of Operation

- Notes:
 - Depending on requirements, connect pins Z, W, 19 and 22 for internal or external clocking as shown in Modes 1, 2, and 3.
 - 2. Delay = $\frac{455}{f_{IN}}$

Mode 6: Series Mode of Operation

Notes:

 Depending on requirements, connect pins Z, W, 19 and 22 for internal or external clocking as shown in Modes 1, 2 and 3.

Mode 7: Temporary Analog Storage Operation

Notes:

1. Depending on requirements, connect pins Z, W, 19 and 22 for internal or external clocking as shown in Modes 1, 2 and 3.

2. Store signal (TTL)

MECHANICAL SPECIFICATIONS

- 1. Module size is 4.5" X 5" X .75" (excluding edge connector).
- 2. Module weight is 5 oz.
- 3. Edge connector is 22-pin double readout, .156 center-to-center spacing. Mating connectors can be TRW type 50-44 series edge connector, or equivalent. Wiring information included with each module.

ORDER INFORMATION

To order a CCD321M, contact your nearest Fairchild sales office, representative or distributor. For any technical questions, contact Fairchild at 415-493-8001.

The future of imaging and signal processing lies in CCD solid-state technology.

Line-scan and area image sensors, signal processing devices and cameras from Fairchild mean increased performance and a solid future.

Specifically, we have such solid offerings as line-scan sensors with 256 to 2,048 elements of resolution. Area imaging sensors, which meet full NTSC resolution requirements for television. Plus complete camera systems for both line-scan and area sensors. And, in addition, we offer

signal processing devices such as delay lines and filters.

And when it comes to buried channel technology, Fairchild gives you the fastest devices with the lowest noise and the highest dynamic range.

But the bottom line for you is the solid

performance of solid-state CCD. With a brand-new future opened up for uses in facsimile, optical character recognition (OCR), industrial measurement and control, robotics, automation and many other camera applications.

We know that applications don't stop there. They are as limitless as your imagination. That's why our support group is available to give you solid support with new designs using solid-state CCD technology.

So when it comes to image sensing and signal processing, it makes sense to look to a solid future. A Fairchild solid-state future.

Call (415) 493-8001 for more information. Fairchild CĆD

Imaging, 4001 Miranda Ave., Palo FAIRCHILD Alto, CA 94304.

TWX:910-373-1227. A Schlumberger Company

LENS CANON

CCD Image Sensing and Signal Processing

Fancer Fairchid Camere & Instrument S.A., 121 Ave. dTable, 75013 Parts. Tel: 331 584 55 66 Telex: 0042 200614, Italy: Fairchild Semiconduttors S.P.A., Viale Consice 7, 20133 Milano. Tel: 02 29 Table: 493/30522. Germany: Fairchild Camere & Instrument (Deutschland) GmbH 8046 Garching Hochbruck. Datimeters: 15: Munches Tel: 049 300031 Telex: 52 4831 Jar d. England. Fairchild Camere & Instrument (UK) Lud. 2014 Jpts, F. Denters Bar, Herdrodiable: PMS 650 Uril: 16: 1070 5111 Telex: 262855. Sweden: Fairchild Semiconduct FA. Systempsonata 6, S. 11620 Slockho-Tel: 8-449255 Telex: 17759 Japan: Fairchild Japan Corporation. Fold Biol., 1-15-21 Shbuys, Shbuys-Ku, Tokyo Jiel: 03: 400 523. Telex: 2424173 (IPCTYO]). Hong Kong: Fairchild Semiconductor (HX) Lud., 13: No Bun Road, Kwani Tong, Kowioon. Tel: 3:44233. Telex: HX79331. Telex: 2424173 (IPCTYO)). Hong Kong: Fairchild Semiconductor (HX) Lud., 13: No Bun Road, Kwani Tong, Kowioon. Tel: 3:440233. Telex: HX79331.

Fairchild Camera and Instrument Corp

CCD IMAGING AND IGNAL PROCESSING

Camera Subsystems

Fairchild CCD Camera subsystems are fully assembled and calibrated electro-optical instruments useful in a wide variety of scientific and industrial applications.

Fairchild CCD camera subsystems are ideally suited for computer interfaced system use. Their I/O compatibilities allow operation in response to computer generated signals or asynchronously while providing computer output signals.

Line Scan Camera Subsystems

The Fairchild line scan camera subsystems are versatile electronic instruments useful in non-contact optical measurement and data acquisition applications. At the heart of the systems are charge coupled device line scan image sensors providing resolutions of 256, 512, 1024, 1728 or 2048 elements per scanned line. The cameras are used

The Line Scan camera subsystems find applications in the general areas

inspection and optical data acquisi-

systems are particularly applicable

for use with objects that are gener-

ally in motion, i.e., carried by a conveyor mechanism. The precise metric

accuracy and digital scanning capa-

of non-contact industrial optical

tion. The Line Scan Camera sub-

The precise geometric accuracy of CCD image sensors make computer processing of optically acquired data practical for many image processing or data analysis applications.

Each camera subsystem includes a camera head which can be supplied with a variety of standard "C" mount lenses, a control unit and associated interconnecting cables. Camera accessories are available

to adapt the basic subsystem to customer requirements.

Camera Subsystems

- for a wide variety of applications in industrial process controls such as position and size measurements, defect and surface flaw detection as well as general purpose optical recognition of object shapes and sizes.
- Optical resolution up to 2048 ٠ elements per scanned line.
- Precise geometric accuracy.
- High-speed data rate up to 10 MHz.
- bility of these subsystems allows easy development of highly sophisticated systems for process and quality control of manufacturing processes.
- Position measurement.
- Size and shape measurement.
- ٠ Defect and surface flow detection and categorization.
- Object sorting for size, shape, ٠ color or other optically-measureable attributes.

- video data rate adjustable over wide ranges. · High sensitivity of CCD sensor
- permits low light level operation.
- Dynamic range of greater than 200 to 1.
- Solid-state ruggedness and reliability.
- · Sample-and-hold video output signal provided.

· Gray level detection capability for density measurements.

- General purpose inspection applications.
- BAR code readers for material handling systems.
- · Facsimile, OCR, microfiche, and mark-sensing data acquisition.

Specifications

Applications

Characteristic	CCD1100C	CCD1200C	CCD1300C	CCD1400C	CCD1500C
Sensor	256x1	512x1	1024x1	1728x1	2048×1
Line Scan Rate	60Hz-35kHz	60Hz-20kHz	60Hz-10kHz	60Hz-6kHz	60Hz-5kHz
Exposure Time	30µs-16ms	51µs-16ms	102µs-16ms	175µs-16ms	204µs-16ms

Data Rate: 100kHz-10MHz, Dynamic Range: ≥200:1, Responsivity: 16V/ft cds

CCD LINE-SCAN CAMERAS MODELS CCD1100, 1300 AND 1400

INCLUDING LENS, CAMERA, CONTROL UNIT, AND INTERCONNECTING CABLE

FEATURES

EASE OF OPERATION

SOLID STATE RELIABILITY

COMPUTER COMPATIBLE

- · 0-1 V sample-&-hold video
- · Binary video
- · Video valid indication
- Internal or external clock control
- Variable exposure time
- · Power line synchronized exposure control
- Automatic or fixed gain control

OPTICAL FLEXIBILITY

- Interchangeable C-mount lenses
- · Operational without a lens for some applications
- Visible light response
- · AGC provides contrast control
- · Resolution 256, 1024 or 1728 elements

MECHANICAL

- · Compact
- · Tripod, dovetail, faceplate mountable
- Lightweight
- ADVANTAGES OF CCD TECHNOLOGY
- High sensitivity
- · Precise photosite spacing
- · Low internal operating voltages.

GENERAL DESCRIPTION - The CCD Line Scan Camera is a versatile electronic camera that is easy to operate. A line scan array in the camera senses a line of optical information and produces an analog waveform proportional to the brightness of the image. When motion is applied to the object being sensed, a complete picture or series of line-scan outputs is generated. The system can be used for precision non-contact measurements, facsimile sensing, velocity measurements, surface flaw detection, shape recognition sorting and many other optical sensing functions.

FUNCTIONAL DESCRIPTION - Model CCD1100, CCD1300 and CCD1400 are complete Line-Scan Cameras consisting of a CCD Line-Scan Camera, Control Unit, and interconnecting cable. The subsystem provides all of the necessary control and signal processing functions for realization of a flexible high performance line-scanning camera system. The subsystem permits precise measurement and sensing of optical data. Applications requirements such as document scanning, industrial inspection, surveillance, spectroscopy, microscopy and precision measurements can be satisfied with the subsystem.

97

LINE SCAN CAMERA - The Line-Scan Camera contains a CCD linear sensor of 256, 1024 or 1728 elements of resolution, a timing control module, a signal processing module and a rugged housing that may be tripod, front faceplate, or dovetail mounted. Selection of a standard lens compatible with the application completes the optical sensing system. A camera to control unit interconnection cable permits complete remote control of the camera by the Control Unit. The Control Unit also accepts input to permit camera control by a microprocessor or computer.

CAMERA CONTROL UNIT - The Camera control Unit, provides four principal operating functions; video output control, video data rate control, exposure control and the camera power supply.

VIDEO OUTPUT CONTROL - A switch selection for automatic gain control or fixed gain is located on the front faceplate. The AGC operating mode is useful for signal compensation due to aging of light source or variations in paper color when scanning facsimile documents. An AGC voltage terminal (BNC) is available for further signal processing. A binaryvideo threshold adjustment potentiometer controls digital quantizing of the output signal over the complete signal range. A TTL level binary-video output signal is available on the front panel BNC connector.

VIDEO DATA RATE - A video clock oscillator is located in the video data rate section. A 6-position switch and a Vernier potentiometer are also included to permit continuous frequency adjustment from 10 MHz to 100 kHz. An input for externally generated clock pulses can be utilized to synchronize camera operation with an external system. EXPOSURE CONTROL - The exposure control can operate in two modes: synchronously (under the control of a computer or the control unit), and asynchronously (under the control of the camera). System flexibility is enhanced by these two modes. Another particularly useful feature of the exposure control permits the sensing subsystem to be synchronized with the power line. When utilizing a fluorescent or other ac powered illumination source, no amplitude modulation by the light source appears on the output signal. When the exposure control switch is located in the position marked "variable", an infinite selection of exposure time can be selected. The minimum exposure time is set by the video line rate and the maximum can be adjusted to 16 ms. BNC connectors are available for all incoming and outgoing signals. A light-emitting diode, when on, indicates that the device has saturated. A saturated condition causes no permanent degradation to the sensor or the subsystem.

CAMERA POWER SUPPLY - The control unit can be powered by either a 110 V ac or 220 V ac, 50-440 Hz power line. Switch selection of this option is located on the rear of the unit. A power supply internal to the control unit provides \pm 15 V and + 5 V to the camera through the interconnecting cable.

SUBSYSTEM BLOCK DIAGRAM

SPECIFICATIONS - Model 1100, 1300 and 1400 Line Scan Camera Subsystem

PERFORMANCE Sensor

Geometric Distortion Dynamic Range Responsivity Photoresponse Non-Uniformity

Saturation Exposure VIDEO OUTPUT Analog Binary AGC Range Data Rate Line Scan Bate

Exposure Time

SPECTRAL RESPONSE INPUT POWER

POWER REQUIREMENTS

TEMPERATURE PHYSICAL DATA Size (without lens) Width Height Weight

Connector

Mount

Model CCD1100: 256×1 CCD110F Model CCD1300: 1024×1 CCD131 Model CCD1400: 1728×1 CCD121H System performance is determined by lens selected. ≥200:1

16 V/ft cd s using a 2854 °K, tungsten source

 \pm 50 mV measured at 500 mV output level using fixed gain setting 0.06 ft cd s

```
V_{pp} video (75\Omega)
"1" = White, "0" = Black
.
20 db
 100 kHz to 10 MHz
60 Hz to 35 kHz for CCD1100,
60 Hz to 10 kHz for CCD1300,
60 Hz to 6 kHz for CCD1400
30 \mus to 16 ms for CCD1100,
102 \mus to 16 ms for CCD1300,
175 \mus to 16 ms for CCD1300,
Approximately visible response
105 - 125 V<sub>ac</sub> 50-440 Hz 0.1 A
210 - 240 V<sub>ac</sub> 50-440 Hz 0.05 A
Camera
                                   Control Unit
Camera
+15 V 150 mA
-15 V 100 mA
+ 5 V 350 mA
+ 6 V 50 mA
- 6 V 60 mA
                                   +15 V 50 mA
-15 V 60 mA
                                    + 5 V 100 mA
0°C to 40°C
 Camera
                                    Control Unit
 2.6" (6.6 cm)
                                    12.0" (30.5 cm)
4.1" (10.4 cm)
 5.5" (14.0 cm)
 6.0" (15.2 cm)
                                     8.0" (20.3 cm)
 1.7 lbs (0.77 kg)
                                    5.4 lbs (2.45 kg)
 CINCH DB-255 F179
                                    CINCH DBC-255
 BNC's
                                    BNC's
 Tripod 1/4 x 20
 Dovetail
```

Front Faceplate

POWER SUPPLY

110

G

220 V

CHASSIS

Ð 3 POWER

TO POWER

A

+67

+ - 6V

+ 15V

+ -15V

► + 5V

-+ GND

START OF

EXTERNAL EXPOSURE INPUT

EXPOSURE CONTROL

L-1

ONE SHOT

MIN

VARIABLE POWER SYNC MODE

FYT

ິ ຊຸ້**10**µs

EXPOSURE

ONE SHOT

SATURATION

Б

€

Ð OUTPUT INSTANT.

PHYSICAL CONFIGURATION OF LINE SCAN CAMERA

PHYSICAL CONFIGURATION OF CONTROL UNIT

TIMING DIAGRAM LINE SCAN CAMERA SUBSYSTEM

NOTE: EACH VIDEO CLOCK PULSE CORRESPONDS TO A SINGLE PICTURE ELEMENT (PIXEL)

٠

SIGNALS - TO AND FROM THE CAMERA UNIT

ANALOG SIGNALS

			RANGE			
SYMBO		MIN	TYP	MAX	UNITS	DEFINITIONS
OUTPU	T — Analog Video Signals					
VO	Video Output Black White Dynamic Bange		0 1.0 >200:1		v v	2
			30		ns	14
	Slew Bate		20		V/us	15
	Bandom & Coherent Noise		5		mVp-p	16
AGCO	Automatic Gain Control Output Gain Bange	Q+1	10.1	11.1	mVp-p	9
	Max Gain (10:1) Min Gain (1:1)		0.6 -4		v v	
INPUT -	Analog Video Signals					
AGCI	Automatic Gain Control Input					10
	Max Gain (10:1)		0.6		v	
	Min Gain (1:1)		-4		v	
OUTPU	. SIGNALS T - Digital Video Signals TTL Levels			1	·	r
BVO	Binary Video Output "1" = White "0" = Black	≥2.4		≤0.8	v v	1
SOL	Saturation Output Latched "1" = Saturation "0" = Normal	≥2.4		≤0.8	v v	12
SOI	Saturation Output Instantaneous "1" = Saturation "0" = Normal	≥2.4		≤0.8	v v	11
vv	Video Valid "1" = Not Valid "0" = Valid	≥2.4		≤0.8	v v	4
SOS	Start of Scan "1" = Start "0" = Hold	≥2.4		≤0.8	v v	5
INPUT -	Control Signals - TTL Levels					
EC	Exposure Control			1		8

LENSES FOR CCD LINE SCAN CAMERA

Lens Focal Length	Maximum Relative Aperture	CCD1100	Angular Field of View CCD1300	CCD1400	Lens Mount
13 mm 25 mm 50 mm 75 mm	F = 1:1.8 F = 1:1.5 F = 1:1.4 F = 1:3.2	16° 8.5° 4.2° 2.8°	60° 33° 17° 11°	91° 54° 28° 19°	с с с с
ZOOM 15 to 150 mm	F = 1:2	14 to 1.4°	53° to 5.6°	82° to 9.5°	С

PARAMETER FOR LENSES OF LINE SCAN CAMERA

OPTICAL CONSIDERATIONS

IMAGE DETECTOR SYSTEM

The image detector utilized by the Line Scan Camera is a monolithic silicon charge-coupled-device structure, which is packaged in a hermetically sealed DIP equipped with an optical-quality glass window.

Sensor Operation

Photo detection in the CCD structure is accomplished in a single row of image sensor elements which are separated by diffused channel stop barriers. The detection mechanism is accumulation of free electrons generated by the photon absorption process. The charge built up in individual photosites is a linear product of the incident illumination intensity and the exposure time over which the electrons are allowed to accumulate.

The charge accumulated within each of the individual photosites is transported sequentially out of the CCD image sensor during a VIDEO VALID scanning line readout period. After further processing, including a sample and hold function, the accumulated charge data becomes the camera's ANALOG VIDEO OUTPUT signal. This signal has an instantaneous amplitude representing the spatial distribution of image brightness along the row of photo detection sites as a function of time. The readout DATA RATE is the subsystem VIDEO CLOCK frequency.

Image detection is a true time integration function: charge is accumulating in each photosite during the total EXPOSURE TIME period which extends from the beginning of one scanning line readout interval until 28 video clock periods preceding the next readout interval. Satisfactory exposures can be made with short flashes from strobe lights or constant-intensity images, depending upon the subject. (Unlike photographic film, the CCD sensor does not suffer any reciprocity failure with very short illumination durations.)

Sensor Geometry

The photo-sensitive area of the image sensor is a row of 256, 1024 or 1728 elements which are on 13 micrometer (0.51 milli-inch) center-to-center spacing. Each sensing site is $13 \mu \times 13 \mu$ for the CCD1300 and $13 \mu \times 17 \mu$ for the CCD1100 and CCD1400. The length of the entire photo-sensitive row is 3.3 mm for the CCD1100, 13.3 mm for the CCD1300, and 22.5 mm for the CCD1400. In terms of spatial frequency, the resolution of the image sensor (and therefore of the camera) is 38.4 line pairs per millimeter (lp/mm).

Spectral Response

The spectral response of the Camera has been shaped to a rough approximation of human photopic sensitivity by inclusion of an optical filter glass in the lens holder to decrease infrared sensitivity. This has been shown to give good results in most applications. The filter can be removed, at the purchaser's option, but will result in lower resolution because long-wavelength photons are absorbed deep in the silicon bulk, which leads to interelement crosstalk.

LENS SELECTION

From a practical viewpoint, selection of a lens for the Line Scan Camera Subsystem is similar to selection of a lens for a photographic camera. Due consideration must be given to the object-tocamera separation, required resolution in the object plane, required depth of focus, available light power density, object size, etc.

Magnification

As used here, "magnification", (M), is defined as the ratio of the object length to the length of the image of the object upon the array. M can be easily derived from the familiar lens equation:

$$\frac{1}{F} = \frac{1}{ID} + \frac{1}{OD}$$
$$M = \frac{OD}{ID} = \frac{OL}{IL}$$

where F = lens focal length, OD = lens-to-object distance (= working distance), ID = lens-to-sensor surface distance at focus, OL = length of object, IL = length of object image upon sensor surface.

Required Illumination

Illumination requirements vary radically, depending upon the camera application. Good results can many times be obtained by use of a power-line driven fluorescent illuminator, and operating the camera in the LINE SYNC exposure control mode. Shorter exposure times will require higher intensity illumination of the object. Either backlighting or frontlighting systems can be used. One way to determine the illumination requirements is to consider the CCD sensor as equivalent to a photographic film with an ASA speed of about 100, and to calculate F-stop and exposure time accordingly.

For special help with illumination, such as special filters or light sources, consult the factory at (415) 493-7250.

DEFINITIONS

- 1. Pixel Picture element. There are 256, 1024 or 1728 pixels in each scanned-line output.
- Analog Video Output A sample and hold output waveform whose amplitude is proportional to the light which each picture element has received during the preceding exposure time.
- Binary Video Output A digitized representation of the analog video output; "0" represents black, "1" represents white. The analog video is processed by an analog comparator. An adjustable reference level permits "1"/"0" decision at any voltage level between 0 and 1 V.
- Video Valid Output A TTL signal that is LOW ≤(0.8 V) only during the video clock intervals when actual video data output is available.
- Start of Scan Output A TTL signal that can serve as a sync pulse; it goes HIGH for one video clock period immediately preceding the video valid output interval.
- Video Clock Output A TTL output signal that indicates the rate at which photosensor element charge packets are being delivered to the output.
- Video Input Clock The video output rate of the camera can be controlled by an external clockgenerator signal to the external clock input of the control unit.
- Exposure Time The amount of time the image sensing elements are allotted to view the image. Control of the exposure time can be synchronized to the camera, synchronized to the control unit (computer or other external source) or synchronized to the power line.

- 9. AGC Output An analog signal that represents the magnitude of the gain necessary to amplify the highest pixel to 1 V output.
- AGC Input An analog signal that controls the gain of the output amplifier. A gain range of 1X to 10X input signal can be accomplished.
- 11. Saturation Output Instantaneous The presence of a "1" level indicates that the respective pixels have exceeded the highest possible level permitted for good signal fidelity.
- Saturation Output Latched A TTL indication that indicates the occurrence of a saturation condition during one line of video information. An LED is illuminated upon saturation.
- Dynamic Range The analog video output signal level resulting from saturation exposure divided by the peak-to-peak noise content of one video output pixel.
- 14. Acquisition Time The time required for the sample and hold circuitry to acquire the associated voltage of next charge packet.
- 15. Slew Rate The speed at which the output amplifier can change from the value of one pixel to the value of the next pixel. At a 10 MHz video rate, a full scale output change from one pixel to the next pixel can be accomplished.
- Random and Coherent Noise The peak-to-peak noise that appears at the analog video output (excluding dark singal) when no illumination derived signal is present.

SUBSYSTEM CHARACTERISTICS

SIMPLE SYSTEM BLOCK DIAGRAM USING CCD1300 SYSTEM

THE FOLLOWING WAVEFORMS WERE TAKEN FROM AN OSCIL-LOSCOPE WHILE THE CAMERA WAS VIEWING A FLUORES-CENT LIGHT FIXTURE WITH A 0.75 INCH BLACK TAPE IN THE MIDDLE.

APPLICATION: SCANNING/RECOGNITION SYSTEM

SYSTEM DESCRIPTION

The Line-Scan Camera subsystem is a powerful scanning and/or recognition tool when combined with a computer or microprocessor. The technique used here, shows a rear lighted document being sensed by the line scan camera. A digital representation (ROM) of the desired object is stored in the microprocessor memory and is placed in synchronization with the unknown object located on the transport. When both the camera output and the microprocessor output indicates that a match has been established, the proper binning control is activated to receive the document. If insufficient criteria is available for determination of a match, the binning selection controller places the bill in the rejection bin. When properly programmed, documentation quality as well as value or denomination can be determined.

This technique is adaptable to automatic sorting systems, where only a few (or many) defects must be found in a large population. By implementing object viewing masks in the microprocessor, only certain fields of optical information in the object can be selected for processing. All other areas of the object are ignored.

APPLICATION: MEASUREMENT SYSTEM

FEATURES:

- Standard fluorescent light fixture
- · Easy to align and maintain
- Self calibrating feature for
 - length
 - light level (AGC)
- Accurate Calculator permits taking many samples and averaging.

SYSTEM DESCRIPTION

By positioning two CCD Line Scan Cameras outside of the longest object and knowing the separation of the reference end points, length can be determined. The technique utilized here, senses the bottom edge of the object (closest to the floor) to eliminate effects of varying diameters or thicknesses. A standard 60 Hz fluorescent light source facing toward the camera can be used as the illumination source; a good black/white transition is necessary. The output of each camera is fed into a counter with bcd output. Since, the distance (LT) is known, the distance from each edge to the transition is determined by the camera. Subtracting L1 + L2 from LT produces the length of the pipe when corrections for lens magnification are made by the programmable calculator. These corrections can be implemented by a lookup table or an equation within the calculator.

This technique is adaptable to area and volume measurements as well as length. Gap, thickness, and position measurement and/or correction systems can be implemented when the camera is used as a feedback sensor to a controller.

BLOCK DIAGRAM

ORDERING INFORMATION

The CCD line scan cameras available are fully assembled cameras using Fairchild's line of linear image sensors. The CCD1100 system uses the CCD110F - 256×1 linear sensor, the CCD 1300 system uses the CCD131 - 1024×1 linear sensor and the CCD1400 system uses the CCD121H - 1728×1 linear sensor. All three cameras are identical in construction except in the differences between all three sensors.

Each system is comprised of four parts:

- 1. A camera head (without lens)
- 2. A variety of standard C mount lenses
- 3. A control unit

4. An interconnect cable between the camera head and control unit.

Also available are various options to the basic system which are additional functions performed by the control box. Below are the different Model numbers for the CCD1100, CCD1300 and CCD1400 systems. When ordering specify the appropriate "Device type."

I. CCD1100 SYSTEM

COMPLETE SUBSYSTEM	LENS	CAMERA	INTER CONNECT CABLE	CONTROL UNIT	PRICE
CCD1100-00 CCD1100-01 CCD1100-02 CCD1100-02 CCD1100-04 CCD1100-05	No 13mm 25mm 50mm 75mm (Zoom) 15 to 150mm	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	\$2500 \$2750 \$2750 \$2750 \$2750 \$2750 \$3750
INDIVIDUAL COMPONENTS					
CCD1110-00 CCD1110-01 CCD1110-02 CCD1110-03 CCD1110-04 CCD1110-05	No 13mm 25mm 50mm 75mm (Zoom) 15 to 150mm	Yes No No No No	No No No No No	No No No No No	\$2000 \$250 \$250 \$250 \$250 \$250 \$1250
CCD1120-00 CCD1120-01	No No	No No	Yes Yes	Yes No	\$1000 \$50
OPTIONS					
CCD1120-02	Pixel Locator				\$ 600

II. CCD1300 SYSTEM

COMPLETE SUBSYSTEM	LENS	CAMERA	INTER CONNECT CABLE	CONTROL UNIT	PRICE
CCD1300-00	No	Yes	Yes	Yes	\$3000
CCD1300-01	13mm *	Yes	Yes	Yes	\$3250
CCD1300-02	25mm	Yes	Yes	Yes	\$3250
CCD1300-03	SUMM	Yes	Yes	Yes	\$3250
CCD1300-04	/5mm	Yes	Yes	Yes	\$3250
CCD 1300-05	(∠oom) 15 to 150mm	res	Yes	Yes	\$4250

INDIVIDUAL COMPONENTS					
CCD1310-00 CCD1310-01 CCD1310-02 CCD1310-03 CCD1310-04 CCD1310-05	No 13mm 25mm 50mm 75mm (Zoom) 15 to 150mm	Yes No No No No	No No No No No	No No No No No	\$2500 \$250 \$250 \$250 \$250 \$250 \$1250
CCD1320-00 CCD1320-01	No No	No No	Yes Yes	Yes No	\$1000 \$50
OPTIONS					
CCD1320-02	Pixel Locator				\$ 600
. CCD1400 SYSTEM					
COMPLETE SUBSYSTEM	LENS	CAMERA	INTER CONNECT CABLE	CONTROL UNIT	PRICE
CCD1400-00 CCD1400-01 CCD1400-02 CCD1400-03 CCD1400-04 CCD1400-05	No 13mm 25mm 50mm 75mm (Zoom) 15 to 150mm	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	Yes Yes Yes Yes Yes Yes	\$3500 \$3750 \$3750 \$3750 \$3750 \$3750 \$4750
INDIVIDUAL COMPONENTS					
CCD1410-00 CCD1410-01 CCD1410-02 CCD1410-03 CCD1410-04 CCD1410-05	No 13mm 25mm 50mm 75mm (Zoom) 15 to 150mm	Yes No No No No	No No No No No	No No No No No	\$3000 \$250 \$250 \$250 \$250 \$250 \$1250
CCD1420-00 CCD1420-01	No No	No No	Yes Yes	Yes No	\$1000 \$50

OPTIONS CCD1420-02

П

\$ 600

For ordering information please contact your nearest Fairchild sales office, Representative or Franchised Distributor. For factory support, call 415-962-3941. Prices are subject to changes without notice.

-

Pixel Locator

Fairchild Camera and Instrument Corporation CCD Imaging

CCD1200/1500 COMMERCIAL LINE SCAN CAMERAS Supplement to CCD1100/1300/1400 Data Sheet

The CCD1200 and CCD1500 cameras, although not contained in this data sheet, are functionally described by it. The differences are in the sensors employed. The CCD1200 camera utilizes a 512x1 sensor, which has elements positioned on 13μ m centers. Each photosite is 13μ mx1 3μ m. The CCD1500 camera employs the CCD143 sensor, a 2048x1 element array. Its 13μ mx1 3μ m photosites are also positioned on 13μ m centers. Since the maximum data rate of the camera is 10MHz, maximum line rates and minimum exposure times are fixed by the number of elements in the sensor. For the CCD1200 camera, line scan rates can be adjusted over the range of 60Hz to 20KHz and exposure time can be adjusted from 51 μ S to 16mS. For the CCD1500 camera, the ranges are 60Hz to 5KHz and 204 μ S to 16mS, respectively.

The CCD1100, 1200, 1300, and 1400 make use of a standard 'C' mount for lens attachment. The CCD1500 uses a bayonet lens mount to achieve the wider field of view necessary for the longer CCD143 array.

The CCD1100 and CCD1300 now employ the CCD111 and CCD133 sensors, respectively replacing their functional equivalents, the CCD110F and CCD131.

Note also, that the ordering codes for the cameras and camera accessories in the back of the sheet are obsolete. Please refer to the CCD Imaging Price Sheets for the correct ordering codes.

July, 1982

PIXEL LOCATOR

FOR THE

CCD1100, CCD1300 and CCD1400 FAIRCHILD LINE SCAN CCD CAMERAS

OPTION MODEL NUMBERS

CCD1120-02 CCD1320-02 CCD1420-02

GENERAL DESCRIPTION

The Pixel Locator is an optional accessory which can be ordered for use with any of the Fairchild standard-product Line Scan Camera Subsystems; the 256-element CCD1100, the 1024-element CCD1300 or the 1728-element CCD1400.

The accessory is a single printed circuit board which is installed in a 3" X 6" X 10" enclosure designed as a companion to the control unit with the standard subsystem family. All required bias voltage and camera signal input connections are made by a single 15-wire cable which is provided for interconnection between the Pixel Locator and control unit. A mating 50-pin connector is provided to allow user construction of a cable for accessing of the Pixel Locator I/O ports.

The primary electrical function of the Pixel Locator is generation of a set of digital output data words which indicate the pixel address locations where white-to-black and black-to-white transitions occur in the Binary Video signal from the associated Line Scan Camera. A pixel is a "picture element", which physically corresponds to a discrete photosite in the monolithic Charge Coupled Device image sensor employed for optical detection in the camera. There are 256 pixels (and hence 256 corresponding pixel addresses) in the CCD1110 camera, 1024 pixels in the CCD1310, and 1728 pixels in the CCD1410.

First-In First-Out buffer memory storage is provided for the set of address words detected by the Pixel Locator, which allows the users system to access address data at any rate up to 2M words per sec. The sequentially-available set of digital address output words permits many non-contact measurement application problems to be resolved with simple binary subtraction or digital display circuitry.

As a secondary function, the Pixel Locator also provides an 8-bit output word which indicates the number of video signal transitions which were detected in a preceeding camera line scan readout.

FAIRCHILD

A Schlumberger Company

D1000

eries Idustrial ine Scan

ameras

CCD Cameras for Non-Contact Measurement and Inspection

HAR LEAS

...at the Leading Edge of Technology

Fairchild's solid state CCD line scan sensor . . the heart of the CCD1000 series cameras

ZALLELINE

Industrial Line Scan Cameras CCD1200R 512-Element CCD1300R 1024-Element CCD1500R 2048-Element

CCD Imaging

Description

Fairchild Models CCD1200R, CCD1300R, CCD1500R are rugged line scan cameras designed for incorporation into non-contact electro-optical measurement and process control systems. The model CCD1200R has a resolution of 512 elements per line; the model CCD1300R has a resolution of 1024 elements per line; and the model CCD1500R has a resolution of 2048 elements per line.

The small sealed enclosure permits the camera to be used in systems where space is limited. The camera can be installed in a water jacket when necessary for environmental protection, and can be located more than 200 cable feet away from a control unit/power supply. A C-mount lens adaptor is standard for the CCD1200R and CCD1300R cameras; a T-mount adaptor is standard with the 2048 element model CCD1500R.

Only two clock signals input through high noise immunity differential line receivers are required for control of the line scan function in the camera. A data rate clock, which can have a frequency of up to 20 MHz, determines the frequency at which video data is read out of the camera: an exposure control clock determines the line scanning rate of the camera. Data rate and exposure clock echo signals are output from the camera for control of system timing at the control unit of a system; these echo signals can be used for timing accommodation in systems using a longer cable between controller and camera. Twisted pair clock wiring can be used for most camera applications; shielded twisted pair cabling is recommended in electrostatically and electromagnetically noisy environments.

The cameras require power supply inputs of +5 and +15 Vdc. Internal regulators and filters provide noise immunity for the bias voltage inputs. Separate force and sense lines allow control of supply voltages and ground potentials at the camera end of long cables.

Two time-division multiplexed analog video outputs are available from coaxial connectors on the camera, at a 75 ohm source impedance. The output video data rate, when measured in pixels per second, is equal to the data rate clock input frequency. Video data is intended to be processed in user-designed circuitry in a control unit as required by the application; simple comparators are sufficient for typical width measurement applications which use black-white binary video while more elaborate analog and/or A-D converted processors are required for systems recognizing gray-scale.

Applications

- NON-CONTACT INDUSTRIAL MEASUREMENT & INSPECTION
- WIDTH/POSITION/DEFECT DETECTION IN PROCESS CONTROL SYSTEMS
- PATTERN RECOGNITION
- CHARACTER RECOGNITION
- IMAGE ANALYSIS FOR COMPUTER CONTROLLED APPLICATIONS

- SMALL, COMPACT SEALED ENCLOSURE
- WELL SUITED FOR USE IN RUGGED INDUSTRIAL ENVIRONMENTS
- ALL SOLID STATE
- UTILIZES CCD SENSOR: 512, 1024, 2048 RESOLUTIONS AVAILABLE
- B REMOTE OPERATION (OVER 200 CABLE FT.)
- WATER JACKET COMPATIBLE FOR HIGH TEMPERATURE OPERATION
- S TWO CLOCK INPUTS CONTROL CAMERA
- NO GEOMETRIC DISTORTION
- 3 1000:1 DYNAMIC RANGE
- BE ELECTRONICALLY VARIABLE DATA RATE AND EXPOSURE TIME
- ACCEPTS C-MOUNT OR 35 MM LENSES
- VIDEO DATA RATES UP TO 20 MHz
- B SCAN RATES UP TO 40,000 LINES/SECOND

CCD1200R/1300R/1500R

Ruggedized Camera Specifications

Camera	CCD1200R	CCD1300R	CCD1500R	
Sensor	CCD153	CCD133	CCD143	
Dhata Element Cine	12 m v 12 m Loosted on 1		2046 X T Element Array	
Photo Element Size	13 µm x 13 µm Located on 1			
Geometric Distortion	Determined by lens selected	Determined by lens selected		
Dynamic Range	Typically better than 1000:1, e	Typically better than 1000:1, excluding clock coupling		
Dark Signal Non-Uniformity (DSNU)	50 mV P-P max. at an integration time of 8.33 ms and $T_A = 25^{\circ}C$			
Photoresponse Non-Uniformity (PRNU)	100 mV P-P max. @ 1 V V _{OUT} , measured at T_{INT} = 8.33 ms, T_A = 25°C, using a daylight fluorescent light source			
Saturation Exposure	Typically 0.67 µJ/cm ² , using a daylight fluorescent lamp light source			
Saturation Signal Voltage	2 V P-P typical, 1 V P-P minimum			
Spectral Response	The camera includes a Corning 1-75 filter			
Video Data Rate	20 M pixels per second maximum (typical)			
Exposure Time (Min)	26 μS	52 μS	103 μS	
Scan Rate (Max) Lines/Second	38 K	19 K	9.7 K	

Maximum usable exposure time is limited by the dark signal level developed during the integration time. Dark signal level is an exponential function of camera and (consequently sensor) temperature: dark signal level doubles for each 6-8°C rise in temperature. Dark signal level also increases linearly with exposure time.

Functional Description

As is shown by the block diagram, the circuitry within the camera is comprised of logic and driver control of the CCD image sensor, the sensor itself, video buffers and power supply filters. An infra-red reject optical filter and lens mounting adaptor are included in the enclosure.

Image Sensor

The Charge Coupled Device line scan image sensor used in the camera is a monolithic component containing a single row of image sensing elements (photosites or pixels), two analog transport shift registers, and two output sense amplifiers. Light energy falling on the photosites generates electron charge packets which are proportional to the product of exposure time (1 + line scan frequency) and incident light intensity. The photosite charge packets are transferred in parallel to the two analog transport registers in response to an exposure time clock signal input into the camera. The transport registers, in response to the data rate clock, deliver the packets in sequence to an integrated charge sensing amplifier where they are converted into proportional video signal voltage levels.

The model CCD1200R camera uses a selected version of the 512 element Fairchild CCD153 sensor; the model CCD1300R camera uses a selected version of the 1024 element CCD133 sensor; and the model CCD1500R uses a selected version of the 2048 element CCD143 sensor.

The key advantages of Fairchild's isoplanar buried channel CCD sensors for use in the line scan cameras include high data rate capability, high charge transfer efficiencies, low noise, relatively small die sizes, and geometrically precise construction.

Logic and Drivers

Differential line driver input signals are converted into TTL level voltages by the line receivers, and then amplified and shaped for control of the image sensor clock inputs. Single-ended TTL clock inputs can be used if the negative differential input is biased at +1 V; this technique is recommended only for short cable clock inputs and/or relatively slow video data rate operation.

The frequency of the data rate clock input signal determines the rate at which charge packets are transported along the CCD analog shift register. Valid video data from odd-numbered sensor photosites becomes available within 50 ns following a falling edge of a data rate clock signal from camera video output A; the signal from video output connector B becomes valid 50 ns after the rising edge of an input data rate clock.

CCD1200R/1300R/1500R

A positive exposure control input signal causes accumulated photosite data to be transferred within the CCD to the analog transport registers for readout under control of the data rate clock. The interval between exposure control inputs is the sensor exposure time.

As is noted in the timing diagram, the exposure control pulse input width is unimportant for camera operation. The data rate and exposure control inputs need not be synchronized. The only timing restriction is that the interval between exposure control input signals should be greater than the camera resolution (# of elements) times 1/video data rate to prevent addition of old and new charge packet data in the CCD registers.

Video Output Buffers

Sensor video is buffered by two independent unity-gain 75 ohm output impedance buffers to become the camera video outputs. The video signals ride on a dc level of about 4 volts above ground. External processing circuitry can be used to demultiplex the two video signals. The amplitude of each video signal will typically be 1 V P-P at sensor saturation; the video signal waveforms are sampled

Block Diagram

and held continuous signals with a small high-frequency sampling clock content.

Optical Components

Each photosite in the sensor is 13 microns (0.51 mils) square. Total active array length is 3.3 mm (131 inches) for the model CCD1200R, 13.3 mm (.52 inches) for the model CCD1300R, and 26.6 mm (1.04 inches) for the model CCD500R.

The 512 and 1024 element array lengths are compatible with C-mount lens. The 2048 element array should be used with a 35 mm film camera format lens. Various focal length lenses can be provided by Fairchild as camera accessories.

When ordering, specify device type LENS25C for 25 mm; LENS50C for 50 mm, standard C-mount lens.

A Corning type 1-75 infra-red absorption filter is made a part of the standard cameras. The filter transmission convolved with the spectral responsivity of a silicon CCD sensor gives the camera a response ranging from about 400 to 800 nm, with a peak response at about 700 nm.

			CCD1200)R/1300R/1500R
Camera Conn J1	ections		Inputs:	Data Rate Clock (MC1), 20 MHz MAX, Differentially Received
Name	Pin			Exposure Control Clock Pulse (XTO), 25ns Min Width Differentially Deceived
MC1⁺	6			Min. Width, Differentially Received
MC1 ⁻	13			• + 5 V @ 500 HIA MAA
XTO	5			
MC2+	8			• Ground
MC2-	15		Outputs:	Data Rate Clock (MC2), Differentially Driven
XT2⁺	7		•	Exposure Sync (XT2), Differentially Driven
XT2-	14			Video A. 75 Ohm Source Impedance
*5 FORCE	4			• Video B 75 Ohm Source Impedance
+15 FORCE	2			• ±5 V Sense
15 SENSE	9			• ±15 V Sense
GND FORCE	3			• Ground Sonoo
GND SENSE	10			· Ground Sense
GND SHIELD			Dimensions	s: • Diameter 2.25"
				 Length 5.125" Without Lens
VIDEO A	VIDEO B			
EXPOSURE (XTO) DATA ATA MCC EXPOSURE VIDEO A			?} ?}DUUUUUU ?} ?}N7 ?}N5 	
VIDEO B +			+?} <u>N-6</u> <u>N-4</u>	
NOTES				
N = Numb 2048 XTO = At lea should out	er ot elements in the array st 25 ns width, may be as d not occur while video da	y, i.e., 512, 1024, or ynchronous and ta is being clocked	MC = 20 I 50 i trar XT2 = Tim inte	MHz MAX. Data rate out equals data rate in plus ns (typical camera propagation time) and any smission line delay ie interval between leading edges determines ggration time
Ordering Info	rmation		_	
When ordering, CCD1200R 512 x 1 Element	specify device type CCD1300R Array 1024 × 1 Element Array	CCD1500R 2048 × 1 Element Array	For further Sales Offic (415) 493-8(information please call your nearest Fairchild se. For technical or applications assistance call 201.

CCD3000 AND CCD4000 CAMERAS VISION FOR AUTOMATION

The Fairchild CCD3000 and CCD4000 are rugged self-contained cameras which make it easy for industrial users to take advantage of the inherent geometric accuracy, wide dynamic range, and reliability of a buried-channel charge coupled device image sensor. The CCD3000 Video Communications Camera provides standard television output signals for display of high-resolution images on low-cost monitors or for digital analysis using NTSC image processing equipment. The CCD4000 Automation Camera provides image data output in a non-interlaced 256 by 256 element square pixel pitch format which can be efficiently utilized by a CPU for automatic inspection, recognition, and robot guidance. Either camera can be used as a relatively small single-component camera, or be separated into a camera control unit plus a cable-connected sense head which is robust enough to be mounted onto a robot arm.

Specification Summary

CCD3000 Video Communications Camera

Scanning Format: Interlaced 2 field per frame, 380 elements per line is standard. (Non-interlaced 1 field per frame is optional.)

Scan Timing: Frame rate is 30Hz, data rate is 7.16M elements per second under control of internal master oscillator.

Synchronization: Can be gen-locked with horizontal and vertical sync signal inputs.

Output Signals:

Analog Video: Composite, 0-1V P-P, 75 ohms. Timing: Vertical and Horizontal Sync, Composite Sync and Blanking, Frame Index, Data Rate Clock.

Resolution: 488 lines per picture height, 380 lines per picture width.

Sensor: Monolithic Silicon CCD Element Spacing: 18µm C-C vertical, 30 µm C-C horizontal Aspect Ratio: 4:3 (horizontal:vertical)

CCD 4000 Automation Camera

Scanning Format: Non-interlaced, 256 lines per frame, 256 elements per line.

Scan Timing: Frame rate is 60Hz; data rate is 6M elements per second when controlled by internal oscillator (External clock input accepted for variable frame rates.)

Synchronization: Scan rate can be controlled by clock input, frames can be synchronized by field index input.

Output Signals:

Analog Video: 0-1V P-P, 75 ohms. Timing: Vertical and Horizontal Sync, Composite Sync and Blanking, Frame Index, Data Rate Clock.

Resolution: 244 lines per picture height, 256 elements per picture width.

Sensor: Monolithic Silicon CCD Element Spacing: 36 µm C-C vertical, 36 µm C-C horizontal Aspect Ratio: 1:1 (horizontal:vertical).

Common Features

Enclosure: Both pieces are gasket and O-ring sealed.

Dimensions:

As 1-Piece Camera: 8.7" long x 2.4" high x 2.8" wide As 2-Piece Camera: Remote Sense Head: 2.3" diameter, 2.0" long, Camera Control Unit: 6.7" long, 2.4" high, 2.8" wide. Sense Head to Camera Control Unit Cable: 12' standard. Weight: Sense Head: ≤ 8 oz.

Environmental Conditions:

Operating Ambient Temperature: Sense Head: 0-30° C. Control Unit: 0-50° C. Acceleration and Shock: > 10G, any axis. Vibration: 0-2000 Hz, 2G, any axis.

Power Requirements: < 10W input, ±15, +5 VDC.

Lens: C-mount is standard, 1" Vidicon types are recommended.

No math—just a straightforward explanation of how CCD memory units and video devices operate and what they can do for you!

By Frank H. Bower Fairchild Camera and Instrument Corp. Mountain View, California

cation of high resolution LIDs as opti-

used in small, rugged, low power TV

cameras capable of operation in very

low light levels such as one-quarter

moonlight. They have been applied in

robots and automatic production sys-

tems as well as in miniature TV

CCD Area Imaging Devices (AIDs) are

cal sensors

Charge-coupled devices (CCDs) are a new family of silicon semiconductor components capable of performing the general functions of image sensing, analog signal processing, and digital or analog memory. To realize the CCD concept's full capability, improved LSI techniques have been developed and basic NMOS processes substantially refined. Recognizing the technical advantages of using CCDs in defense systems, military and other government agencies started funding a number of research and development programs in the early seventies to accelerate the development of practical devices.

Today, there is a small but growing number of manufacturers offering high-performance CCD image sensing devices, analog signal processing devices, and large capacity digital memory integrated circuits. Several laboratories are also developing and building small numbers of special devices with government contractual support.

CCD Linear Imaging Devices (LIDs) have made possible the new generation of fast facsimile machines now reaching the market. They are also used in high speed mail sorting, rapid non-contact inspection and quality control measurement, and "smart" computer-controlled material handling systems. Real-time aerial mapping, reconnaissance, and surveillance systems have been improved by the appli-

February 1978 Military Electronics/Countermeasures

cameras for military systems (Figure 1).

The Charged-Coupled Device

The CCD operating principle is called "charge-coupling." Finite amounts of electrical charge called "packets" are created in specific locations in the silicon semiconductor material. Each specific location, called a

A Schlumberger Company

"storage element," is created by the field of a pair of gate electrodes very close to the surface of the silicon at that location. By placing the storage elements adjacent to each other, in a line for instance, voltages on the adjacent gate electrodes can be alternately raised and lowered and cause the individual charge packets beneath them to be passed from one storage element to the next (Figure 2). Since each charge packet may be of different size, the line of elements becomes a very simple analog shift register. All CCDs are basically shift registers, and because the transfer of charge from each storage element to the next adjacent element is very efficient, the amount of charge in each packet stays substantially the same, even after it has been passed from one element to as many as a thousand sequentially adjacent elements. Since the amount of charge in each packet is unique, the string of charge packets can represent analog information. The device is, in a sense, storing that information until it is delivered as an electrical signal from the charge detector built into the device at the end of the charge-coupled register.

This shift register performance is the basic characteristic of CCDs used in analog signal processing and memory devices. Figure 3 shows a diode-gate structure by which information is put into and taken out of the CCD register to allow operation in an electronic system operating with currents and voltages rather than with the chargepackets manipulated in the CCD itself.

Performing the image sensing function utilizes another basic characteristic of silicon semiconductor devices. This is the photoelectric effect by which free electrons are created in a region of silicon illuminated by photons in the approximate spectral range of 400 (blue) to 1100 (near infrared) nanometers wavelength. Response peaks at about 800 nanometers. Absorption of such incident radiation in the silicon generates a linearly proportional number of free electrons in the specific area illuminated. If a silicon device structure having a repetitive pattern of small but finite photo-sensing sites is created, the number of free

Figure 2: A two-phase CCD shift register. The two complementary clock voltage waveforms ϕ_1 and ϕ_2 are connected to alternate closely-spaced gate electrodes on the surface of the thin insulating layer on the silicon. A deep potential well which attracts electrons is created under Insulating layer on the sincon. A deep potential were which at a description is to each other the electrode clock voltage HIGH and disappears under the electrodes at clock voltage LOW. At t = 0, ϕ_2 voltage is HIGH and the finite charge packet of seven electrodes is in the potential well under gate electrode #2 in storage element *0*. At t = ϕ_2 voltage is the potential well under gate electrode #2 in storage element *0*. At t = 0, we have the potential well under gate #2 has collapsed due to ϕ_1 having gone LOW, and, since at the same time the adjacent electrode #3 connected to ϕ_2 has gone HIGH, the seven electron charge packet has been attracted to the new potential well under electrode #3. Another half cycle later, at t = 1 cycle, the potential well under electrode #3 has collapsed with ϕ_2 going LOW and the electron packet moves to the new well under electrode #4 which has gone HIGH with clock voltage ϕ_1 .

Continued from page 17

electrons generated in each site (charge-packet) will be directly proportional to the incident radiation on that specific site. If the pattern of incident radiation intensity is a focused light image from an optical system viewing a scene, the charge-packets created in the finite photo-sites array will be a faithful reproduction of the scene projected on its surface.

After an appropriate exposure time. during which the incident light on each site is generating its time and intensity proportional electron charge-packet, the charge-packets are simultaneously transferred by charge-coupling under an adjacent single long gate-electrode, to a parallel CCD analog transport shift register. The single long gate is called the transfer-gate (Figure 4).

Each charge-packet corresponds to

a picture element (pixel) and, when transferred to the adjacent CCD transport shift register, continues to faithfully represent the total sensed radiant energy which was absorbed in the specific photo site. The transfer gate is immediately returned to the non-transfer clock level (LOW) so photo-sites can begin integrating the next line of incident image information. At the same time, the CCD analog transport register, now loaded with a paralleltransferred line of picture information in the form of charge-packets from a line of sensor sites, is rapidly clocked to deliver the picture information, in serial format, to the device output circuitry

The output circuitry consists of an output gate-diode structure and appropriate reset and buffering signal amplifiers. The output terminal delivers a sequence of electrical pulses, the amplitude of each being directly proportional to the charge-packet size generated in the photo-site where the charge-packet originated. Sampleand-hold circuitry, either on-chip or in the video processing support circuitry

ivers a line of video information.

Linear imaging devices (LIDs) sense and deliver information a line at a time; they are electronically scanned in one dimension and are often called linescan devices.

Area imaging devices (AIDs) have an X-Y array of sense elements and sense an area image. They are built with both vertical and horizontal transfer gates and transport registers, and deliver an entire field of video information from each integration (exposure) period in the form of a series of lines of video signal.

CCD Characteristics

• Temperature: the CCD works best at low temperatures. It has no problem at -55°C and can perform at full capability to +70°C. Above 70°C. storage-related parameters degrade rapidly due to physical properties of semiconductor materials. All semiconductor materials continuously generate hole-electron pairs due to thermal energy, even at room temperature. If there is a finite packet of electrons representing information in a storage element, and thermally generated electrons add to that packet over a period of time, the packet will become larger and eventually will no longer accurately represent the original information.

In image sensors, which are very high dynamic range analog devices. it is often desirable to provide cooling for low light level applications to reduce thermal electron generation. Since image sensor devices are used as single units or as a matrix of two to six devices, and dissipate on the order of 150 mW or less, cooling is relatively simple. In CCD memory, long registers could be a problem, so the devices are designed with "refresh" cells at frequent intervals in the register. These sense-and-restore cells detect the "1" or "0" at the output end of a shift register section before enough thermal electrons can be added to cause misinterpretation of the data. Practical economic considerations, however, limit the temperature range for CCD memory to about - 70 C. Because of the very low power dissipated in CCD memory. it is practical to consider providing cooling to achieve economical military electronic systems.

· Speed: the speed limitation of CCD

devices is theoretically that of electron mobility in silicon and experimental devices operating in the gigahertz range has been reported. Since surface-state trapping in the silicon slows the net mobility of carriers near the surface, "buried channel" devices are faster than "surface channel" devices. The practical limitation to operating speed is caused by the edge-dependent charging current associated with delivering the clock voltages to the capacitances of the shift-register gate electrodes (C dv/dt current). The clock-driver circuitry also dissipates increased power with increasing frequency of operation. Desired operating

Figure 4: Simplified block layout of a linear image sensor.

speed is, therefore, a very strong design consideration in determining how much of the clock driving function should be put on-chip, thus increasing chip temperature, or left for the system designer to provide on the board.

 Reliability. Since materials used and the rabrication and packaging technology for CCDs are essentially those of NMOS LSI products, CCD device reliability equals that of NMOS. CCDs are inherently lower power devices and, therefore, the occurrence of thermally-induced failure mechanisms should be lower than that of NMOS. Manufacture of CCDs utilizes state-ofthe-art NMOS production technology for its N channel, silicon gate, ion-implanted, surface passivated structure. Packaging can be in any of the commercial or high-reliability packages already proven in industry.

 Noise. The basic CCD register, heart of all CCD devices, is practically noiseless because it does not have PN junctions as do MOS and bipolar devices. Associated on-chip charge detectors and buffer amplifiers do have PN junctions and introduce some noise. Dynamic ranges of 10,000:1 have been achieved with cooling; 200:1 to 500:1 is common at room temperature.

 Radiation Hardness, CCDs are not basically "hard." They are tabricated on very lightly doped, high-resistivity silicon which has characteristics more easily altered by radiation than the more heavily doped silicon in bipolar and conventional MNOS devices. Buried channel CCDs have been reported to be more radiation tolerant than surface channel devices. Government sponsored development programs are under way at several laboratories to investigate methods for radiation hardening CCD devices. **FAIRCHILD** A Schlumberger Company

> · Packing Density. CCDs have a three to five times packing density advantage over the next most dense MOS largescale-integrated circuits. This is primarily because the basic CCD storage element requires no electrical contacts. The storage and transport of the information in the CCD register are performed by the pattern of conductive gate electrodes on the surface of the thin oxide layer over the silicon. The gates require much less area per storage element than the combination of gates and ohmic contacts required for an MOS storage element. The 64 kilobit CCD memory device presently produced by Fairchild is a chip of silicon $.175'' \times .230''$ in size.* With foreseeable improvements in LSI manufacturing technology and careful selection of the memory chip organization and on-chip peripheral circuits, devices with 256 kilobits capacity will be available within the next year or two.

CCD Applications in Miliary Electronics

Image Sensors. A CCD image sensor device can be configured as a line-scan device or as an X-Y TV type device. It can also be configured as a combination of the two basic structures for special applications. The line-scan device has a single line of sense elements and scans itself electronically in one axis—along the sense elements' centerline. It is often referred to as a Linear Imaging Device (LID). The X-Y device is an area matrix of sense elements capable of being electronically scanned in both X and Y axes to produce an area TV picture. It is often referred to as an Area Imaging Device (AID).

Area Imaging Device (AID). Most CCD image sensors have wide spectral range, and are nominally useful over the spectral range 450 to 1000 nanometers; i.e., visible through the middle of the near infrared regions. Standard commercial CCD image sensors will operate well up to a wavelength of about 800 to 900 nanometers; beyond that wavelength, they lose resolution rapidly. Resolution loss is due to the IR image photons generating electrons much deeper in the silicon and, therefore, beyond the attractive effect of the field created by the gate electrodes at the silicon surface. The generated electrons diffuse in the bulk of the silicon until they are either lost by recombination or move nearer to the surface where they are captured in the field of one of the sense elements. However, because of the time delay, they may arrive too late or in

a sense element other than the one through which their exciting photon entered the silicon. The practical result is a loss of resolution or smearing of the image sensed. In some laboratories, work is being done to develop special CCDs for long wavelength IR image sensing.

All CCD image sensors consume low power and operate on low voltages. They do not exhibit lag or memory and are not damaged by intense light. Present devices will over-saturate and "bloom" under intense illumination but are not permanently damaged. Anti-blooming structures are under development.

Linear Imaging Devices(LIDs)

LIDs are configured as a single line of sensor elements on a long narrow chip. These devices are commercially available with 256, 1024, and 1728 elements with longer devices in development. LIDs are used in facsimile machines or spectrometers where the subject is a line pattern. When relative motion of the scene with respect to the sensor is provided by other means, the array can present a high-resolution TV-type picture. A continuous real-time picture can be obtained from a LID sensor in an aircraft or satellite passing over the surface of the earth at a constant altitude and velocity. Using a scanning mirror in the optical system can accomplish a similar result. LIDs applications include:

 High speed, high resolution facsimile (text, maps, fingerprints, photographs)

Figure 5: Artillery launched TV system concept.

 Aerial mapping with high measuring accuracy

 Real-time reconnaissance and surveillance

- Bar-code reading
- Sorting parts, mail, currency, food
- Conveyorized product non-contact inspection
- Automatic warehouse routing and palletizing control

Special configurations of LID in which the array is eight to 64 elements wide (rather than one element wide) can be used for Moving Image Integration (MII) applications and are particularly effective in very low light level applications. Combined with analog delay lines, a LID can be used as the sensor for Moving Target Indication (MTI).

Area Imaging Devices (AIDs)

AIDs produce a TV picture. They are built in an array capable of being selfscanned in both the X and Y direction. These devices are available in 100 \times 100 element and 244 imes 190 element arrays; they have also been built in smaller sized arrays and in arrays of 400 × 400 and 488 × 380 elements. As an example of a commercially available device, the Fairchild CCD211 is a 244 × 190 element array with a sense area format equivalent to a Super 8 movie frame, and in a 3 × 4 aspect ratio for TV presentation. The device dissipates 100 mW when operated at a 7 MHz data rate, and operates at voltages of 12V to 15V. Its dynamic range is typically 300:1 at room temperature. Chip size is

.245" \times .245". AIDs applications include:

 Low light level search and surveillance

Missile and RPV guidance

Star tracking

 Remote or projectile TV reconnaissance (Figure 5)

Cockpit or gunsight camera

Space telescope

Large area AIDs are difficult to produce "blemish free" at low cost. Industry is aggressively addressing reduction and'elimination of random defects to achieve practical, low-cost volumeproducible AIDs with chip diagonal dumensions in the order of 0.500".

Analog Signal Processors

The CCD has been shown to be a nearly ideal analog shift register. The simplest analog signal processor is a variable analog delay line where the delay obtained is a direct function of the clocking frequency and the number of storage elements in the register. Differential phase and differential gain of 1% or less is available in commercial devices. Tapped CCD delay lines are excellent sampled analog filters and can be externally programmed to change filter characteristics, scan a frequency spectrum, or provide correlation of weak signals in a strong noise background. CCD Analog Signal Processor applications include:

- Video and audio variable delay lines
- Moving target indicator filter
 Signal correlation and convolution
- Signal correlation
 Sonic imaging

Voice compression and scrambling

Video frame-grabber

 Communications and secure communications filter

Scan rate converter

• Spread spectrum filter

Digital Memory

All CCD memories are basically serial because of the fundamental shift register nature of charge-coupling. They are dynamic memories which require periodic refreshing and, like other semiconductor memories, the are volatile. While their latency is greater than bipolar and MOS memory, they are as much as fifty times faster than magnetic disc and drum memories. Because of the shift-register nature of CCD, the CCD memory devices are block-accessed rise than the han tanper package allows use of distributed memory and changes in computer architecture. CCD memory applications include:

- · Cache memory
- Bulk storage
- Signal analysis for sonar, radar
- · Synthetic aperture radar memory
- Digital delay

 Drum and disc replacement As manufacturing technology continues to improve, all semiconductor memory will enjoy an increase in bitdensity and a reduction in device and system costs due to the reduction in count. CCD package memory specifically will continue to remain more dense than bipolar and MOS memory for reasons previously stated. It is probable that CCD memory, because of its lower power dissipation. will be able to shift to packaging capable of being mounted more densely on P.C. boards. It is also probable that power dissipation can be reduced further by designing for operation at lower voltages. Peripheral circuitry such as on-chip drivers will be added to new CCD memory devices to the extent that added power dissipation can be tolerated and the additional silicon area required is economical from an overall systems cost standpoint.

Conclusion

Charge-coupled devices are now a family in production, bringing new capability to the military electronics systems designer. The high-volume, low cost production of area image sensors for TV sensing will require a combination of elimination of the causes of random defects from each step in the manufacturing process and improvement in the photo-lithographic techniques for patterning large area arrays so their area can be reduced without reducing responsivity.

Volume production of high performance analog signal processing devices such as filters requires definition of a volume market sufficient to warrant the development costs and application of resources. Increased control of manufacturing processes, particularly accuracy of the photo-lithographic process or its electron-beam successor, will allow the dimensional control necessary to produce devices which are linear over a large dynamic range and have the high rejection characteristics desired.

CCD memory will move ahead in the next few years to 256K bits per package from the present 64K level. Further, reduced power dissipation per bit and more compact packaging are probable. Ω

FAIRCHILD A Schlumberger Company

CHARGE-COUPLED DEVICES

The products of a new concept in semiconductor electronics, they hold considerable promise in applications as diverse as image sensors and information-storage elements for computer memories

by Gilbert F. Amelio

For the past four years there has solid-state physicists about a new concept in semiconductor electronics that may someday have an impact on our lives as dramatic as that of the transistor. The new concept is charge-coupling and its practical manifestation is the chargecoupled device.

Like the transistor, the charge-coupled device is a concept of semiconductor electronics; as such it is subject to the same physical laws that govern the tran-sistor's dynamics and fabrication. That, however, is where the similarity ends. Although the charge-coupled device shares much the same technological base with its distinguished predecessor, it is a functional concept that focuses on the manipulation of information rather than an active concept that focuses on the modulation of electric currents. Transistor technology has made possible computer-memory components with thousands of memory elements on a single chip of silicon; charge-coupling is making possible comparably sized memory components with tens of thousands or even hundreds of thousands of memory cells per silicon chip at approximately the same cost.

What is charge-coupling? It is the collective transfer of all the mobile electric charge stored within a semiconductor storage element to a similar, adjacent storage element by the external manipulation of voltages. The quantity of the stored charge in this mobile "packet" can vary widely, depending on the applied voltages and on the capacitance of the storage element. The amount of electric charge in each packet can represent information.

Perhaps the easiest way to visualize the operation of a charge-coupled device is through the use of a mechanical analogy. Imagine a machine consisting of a series of three reciprocating pistons with a crankshaft and connecting rods to drive them [see top illustration on next two pages]. On top of one or more of the pistons is a fluid. Note that rotating the crankshaft in a clockwise manner causes the fluid to move to the right, whereas rotating the crankshaft in a counterclockwise manner would cause the fluid to move to the left. Since it takes three pistons to repeat the pattern, this arrangement is called a three-phase system. If it is desired to move the fluid in one direction only, a two-phase system can be devised by imposing an asymmetry on the piston design [see bottom illustration on next two pages]. Regardless of the direction of rotation, the fluid now advances to the right.

Analogous charge-coupled devices can be fabricated of silicon [see illustrations on page 26]. The devices consist of a "p type" silicon substrate (in which electrons are normally the signal carriers) with a silicon dioxide insulating layer on its surface. An array of conducting electrodes is deposited in turn on the surface of the insulator. The electrodes can be interconnected to establish either two-phase or three-phase operation. Underlying the insulator and within the bulk of the semiconductor the electrical conductivity of the silicon can be selectively altered to form "n type" material (in which not electrons but electron "holes" are normally the signal carriers). The correspondence with the machine in the mechanical analogy is realized by supposing that the fluid represents an accumulation of electrons, that the pistons represent the potential energy associated with the voltages applied to the electrodes and that the crankshaft and connecting rods represent the driving voltages and their relative timing.

When a periodic wave form called a

"clock" voltage is applied to the electrodes, some of the electrons in the vicinity of each electrode will form a discrete packet of charge and move one charge-coupled element, or unit cell, to the right for each full clock cycle. The packets of electron charge therefore move to the right as a result of the continuous lateral displacement of the local "potential well" in which they find themselves. They are thus-or so it seemsalways falling.

The creation of the necessary potential well in the semiconductor substrate deserves some elaboration because of its central importance to the charge-coupling concept. In this context a potential well is a localized volume in the silicon that is attractive to electrons; in other words, it is the most positive place around and hence is a desirable location from the point of view of the negative electron. Potential wells are formed in a charge-coupled storage element by the interaction of the different conductivity-

CLOSEUP VIEW of a small portion near the output of a charge-coupled photosensor array is provided by this scanning electron micrograph. Each element and its associated readout electrode measure 1.9 square mils.

MECHANICAL ANALOGY useful in visualizing the operation of a charge-coupled device is depicted in this sequence of idealized drawings. The machine illustrated consists of a repeating series of

type regions of the silicon [see illustration on page 27]. This interaction forms a well for electrons such that the higher the clock voltage, the deeper the well. Any electrons in the well will move with the clock voltages.

Now, if two or more wells of different depths are placed close to one another, the wells will overlap and charge may be "coupled," or transferred, from one storage element to the next as the depth of the well is altered by the clock voltages. Thus the external clock voltages on the electrodes cause the electrons to move in packets through the semiconductor in a potential-energy trough known as a channel. This mode of electron transfer is the essence of charge-coupling.

The phenomenon of charge-coupling

is in itself inadequate for the purpose of constructing a useful device. A practical charge-coupled device must be able to introduce the necessary electrons into the structure and also have a means at some location in the channel for detecting the amount of charge in a packet. Thus for a structure to be classified as a charge-coupled device it must possess at least three attributes: input, chargecoupling and output.

As an example of a simple yet functionally complete charge-coupled device, consider a "shift register" consisting of eight three-phase elements, an input diode and gate and an output diode and gate [see illustration on page 28]. This structure is in fact very similar to the

three reciprocating pistons with a crankshaft and connecting rods to drive them. On top of one or more of the pistons is a fluid (color). Rotating the crankshaft in a clockwise manner, as shown

> first charge-coupled device ever fabricated. The signal that is to be entered into the charge-coupled device is connected to the input diode, which acts as a source of electrons. If the input gate is held at a low voltage, no signal electrons can enter the channel. In order to put a packet of electrons into the device it is necessary to wait until the firstphase electrodes are in the high-voltage condition and then "turn on" the input gate by raising its voltage. Electrons fill the potential well until the energy level for electrons in the well is the same as that for the electrons in the source. The input-gate voltage is now lowered to isolate the source, and the charge packet created is ready for transfer down the channel. In the detection of the signal

ASYMMETRICAL PISTONS are added to the mechanical analogue in order to introduce the operating principle of a two-phase system. Regardless of the direction in which the crankshaft is rotated, the fluid now advances to the right. In the correspondence

in this instance, causes the fluid to move to the right. If the crankshaft were to be rotated in a counterclockwise manner, on the other hand, the fluid would move to the left. This particular type of ar-

the charge is merely transferred to a "drain," or output diode, where it appears as a current in some external circuit. This simple charge-coupled device fulfills the function of an eight-bit shift register, a device potentially useful in computer architecture.

Devices fabricated and operated in this manner verify the predicted performance with one exception. Unfortunately not all the electrons advance with the packet on each transfer, and the residual charge appears in a trailing packet. The magnitude of such "charge-transfer inefficiency" is a function of the design of the device and the frequency of operation. Transfer inefficiency imposes a fundamental limitation on the speed and number of transfers for a practical charge-coupled device because of the resulting attenuation of the charge packet as it is moved through the device from one region to the next.

There are two reasons for chargetransfer inefficiency. First, the electrons may be inhibited from moving because of local regions of lower potential energy (corresponding to dents or ridges in the top of the piston in the mechanical analogy). Second, the frequency of operation may be so high that there is not enough time for all the electrons to follow the moving potential wells. The former problem is one that is influenced predominantly by the design details of the particular charge-coupled device. Researchers working on the development of such devices are continuing to explore

rangement, which requires three pistons to repeat the pattern, is called a three-phase system. An analogous charge-coupled device can be fabricated of silicon (see top illustration on next page).

> this aspect of charge-coupling. Recent advances in technology have significantly reduced the seriousness of the problem. The problem of the speed of the electrons' motion, however, has more basic origins and deserves additional comment.

> The electrons are induced to move to an adjacent region of lower energy (that is, a deeper potential well) by a combination of three influences: self-induced forces, field-aided forces and thermal forces. Self-induced movement results from the simple fact that a high-density packet of electrons (or any similar particles) tends to spread rapidly if the constraining force is removed, as is the case when the clock voltages change. This type of force is important during the

with an actual charge-coupled device the fluid represents an accumulation of electrons, the pistons represent the potential energy associated with the applied voltages and the crankshaft and the connecting rods represent the driving voltages and their timing.

TWO THREE-PHASE CHARGE-COUPLED ELEMENTS are shown in the cross-sectional diagram at right; the curves at left give the relative timing of the "clock voltage" wave forms for threephase operation. The device consists of a "p type" silicon substrate (in which electrons are normally the signal carriers) with a silicon dioxide insulating layer on its surface. Conducting electrodes are deposited on the surface of the insulator. Underlying the insulator and within the bulk of the semiconductor the electrical conductivity of the silicon can be altered to form an "n type" layer (in which electron "holes" are normally the signal carriers). When the clock voltage is applied to the electrodes, some of the electrons in the vicinity of each electrode will form a discrete packet of charge (black dots) and move one element to the right for each full clock cycle. In effect the packets of electron charge move to the right sa result of the continuous lateral displacement of the local "potential well" in which they find themselves (white contours in substrate).

THREE TWO-PHASE CHARGE-COUPLED ELEMENTS are shown in these cross-sectional diagrams; again the curves give the relative timing of the clock voltages, this time for two-phase operation. Here the potential wells are given the required asymmetry by the introduction of different n-type conductivity regions just under the insulating layer. As in the illustration at the top, the external clock voltages on the electrodes cause the electrons to move in packets through the n-type semiconductor layer toward the right. A Schlumberger Company

early stages of charge transfer. Field-aided movement is important if the structure is designed in such a way that electric fields exist to assist the electrons' motion in the desired direction. This corresponds to adding a slope to the top of the pistons in the mechanical analogy. If such a force is present, it is important only toward the end of the charge-transfer cycle. Thermal forces arise from the fact that the electrons receive thermal energy from the silicon lattice and as a result are free to move about randomly. In their random motion they tend to move to regions of minimum electron energy. This type of force is important at the end of the transfer cycle only if fieldaided forces are absent.

The self-induced force lasts for only a brief time at the beginning of the transfer cycle, but it is responsible for moving about 90 percent of a "saturation," or full, charge. If the field-aided force is present, it is responsible for moving most of the remaining charge at a rate directly proportional to the strength of the electric field and inversely proportional to the distance between the electrodes. If the field-aided force is not present, the remaining charge will move under the influence of thermal forces at a rate directly proportional to the temperature and inversely proportional to the square of the distance between the electrodes. This rate is usually lower than that resulting from the field-aided force. although at small dimensions it becomes increasingly significant because of its inverse quadratic dependence on distance.

Although these forces are responsible for moving only a comparatively small fraction of the total charge packet, they are important because very little transfer inefficiency can be tolerated in practical devices. For example, if 1 percent of the charge is left behind at each transfer, most of a charge packet will have dispersed after only 100 transfers. In general the charge-transfer inefficiency must approach one part in 10,000 to be considered acceptable for most practical applications. In spite of this requirement, devices that can be operated at frequencies of up to 100 megahertz (100 million cycles per second) are possible if the structures are made small enough. With modern microelectronic manufacturing techniques it is possible to design and build a charge-coupled unit cell with dimensions of less than a mil (a thousandth of an inch) on a side, although it is not always appropriate to do so.

Unit cells of such small dimensions are possible because of the simple nature of the charge-coupled structure, which does not require direct contact with the

POTENTIAL-ENERGY PROFILES for a typical charge-coupled information-storage element are shown here as a function of distance into the bulk of the semiconductor at right angles to its surface. (In order to show the potential wells clearly, this diagram has been rotated by 90 degrees with respect to the preceding ones.) The charge-distribution patterns are shown for two situations: with no electrons in the well (top) and with some electrons in the well (bottom). As the curves indicate, the higher the clock voltage, the deeper the well.

silicon in the array region. This arrangement is to be contrasted with conventional transistor technology, which in general requires several contacts per functional cell. Contacts consume a significant amount of valuable silicon because of the contact area and the tolerances needed to form a good electrical connection. From the manufacturing viewpoint it is this feature more than any other that makes charge-coupled devices so attractive.

The ability to generate, move about and detect many separate packets of electrons in a small piece of semiconductor material suggests that the chargecoupling principle can be applied to fulfill a number of information-processing requirements. In particular the highly ordered manipulation of charge packets characteristic of the operation of chargecoupled devices favors uses such as image sensing, computer-memory operation and sampled-signal processing. In each case the function is achieved by a proper combination of charge-coupled unit cells that operate individually exactly as described above.

Silicon, the semiconductor material of

which charge-coupled devices are generally fabricated, is highly sensitive to visible and near-infrared radiation [see illustration on page 9]. In other words, when light falls on a silicon substrate, the radiation is absorbed (by means of the Einstein photoelectric effect), which results in the generation of electrons in a quantity proportional to the amount of incident light. If there is present an array of potential wells such as the one formed by charge-coupled devices, these electrons will fill the wells to a level corresponding to the amount of light in their vicinity. This "electro-optic" creation of electrons represents an input to the charge-coupled device that is entirely different from the input method required for the shift register discussed above and makes the charge-coupling concept useful for very different kinds of application. Nonetheless, the packets of electrons generated by the light can be moved, just as in the shift register, to a point of detection and converted to an electrical signal representative of the optical image incident on the device. That signal, after some conditioning, can be displayed on a cathode ray tube. In this way a charge-coupled device can 1 INPUT INPUT TRANSFER ELECTRODES CUTPUT OUTPUT SILICON LAYER P-TYPE SILICON SUBSTRATE

INPUT AND OUTPUT OPERATIONS of a simple eight-element, three-phase chargecoupled "shift register" are summarized in this series of diagrams. The signal enters the device by way of an input diode, which acts as a source of electrons. If the input gate is held at a low voltage, no signal electrons can enter the potential-energy "channel" (1). In order to put electrons into the device one must wait until the first-phase electrodes are in the highvoltage condition and then "turn on" the input gate by raising its voltage (2). Electrons fill the potential well until the energy level for the electrons in the well is the same as that for the electrons in the source. The input-gate voltage is now lowered to isolate the source (3), and the charge packet created is ready for transfer down the channel (4). The signal is detected by transferring the charge packet to an output diode, where it appears as a current. become the heart of a television camera.

One of the significant advantages of charge-coupled image sensors over vacuum-tube sensors is the precise knowledge of the photosensor locations with respect to one another. In a camera tube the video image is "read" from a photosensitive material by a scanning electron beam. The position of the beam is never precisely known because of the uncertainty in the sweep circuits resulting from random electrical noise. In a charge-coupled sensor the location of the individual photosensor sites is known exactly, since it is determined during the manufacture of the component. Such "metric" accuracy is important for proper alignment in color cameras and in applications requiring data reduction of the acquired image (as in photographic missions in space and photogrammetry).

It is generally convenient for purposes of discussion to separate charge-coupled sensors into two categories: linear sensors and area sensors. A linear image sensor is a simple straight-line array of photosensors with the associated readout and sensing circuitry. An area image sensor is a two-dimensional mosaic of photosensors, again with the associated readout and sensing circuitry.

Linear image sensors are used for a host of applications, including air-toground and space-to-ground imaging, facsimile recording and slow-scan television. The image to be viewed is obtained by providing relative motion between the sensor and the scene with the axis of the array perpendicular to the direction of the motion. A resolution of 500 or more photosensor elements is usually required. A primitive linear imaging device can consist of nothing more than a charge-coupled shift register and an output diode. In this structure the image is acquired when one holds the potential wells stationary by stopping the voltage clocks for some period of time (the "integration time") and then rapidly reads out the information by starting the clocks. Such a simple charge-coupled device should be practical only in special applications that allow very long integration times. The reason for this limitation is the "smearing" of the image that results when the shift register is clocked at the same time that it is illuminated.

A really practical charge-coupled linear image sensor is more complex. It consists of a photosensor array for accumulating the photocharge pattern plus an associated charge-coupled shift register with one charge-coupled element for each photosensor element in order to move the resulting charge packets to an output point. The elements of the photoA Schlumberger Company

sensor array are individual charge-coupled storage elements with a common electrode called a photogate. They are electrically separated from one another by a highly concentrated *p*-type region called a channel stop. The photosensor array is separated from the charge-coupled shift register by a region over which there is an electrode called the transfer gate.

In operation the photogate voltage is held high and the charge generated by the incident radiation (the photocharge) is collected by the individual photosensor elements. At the end of the integration time the transfer-gate voltage is raised from its normally low voltage condition. The charge-coupled shift-register electrodes adjacent to the photosensor elements are also brought to a high-voltage state. The photogate voltage is then lowered and the accumulated photocharge transfers to the shift register. After that is accomplished the transfer-gate voltage is lowered and the photogate voltage is brought back to its normally high state for another integration period. Meanwhile the charge-coupled shift register is clocked for the purpose of reading out the charge pattern.

A high-density image sensor is more economically designed with one shift register on each side of the photosensor array. Since there must be one chargecoupled element for each photosensor element, the distance between photosensor elements is equal to the distance between the shift-register electrodes for a two-phase charge-coupled shift register and is equal to 1.5 times the distance between shift-register electrodes for a three-phase charge-coupled shift register. In this example the signal charge from the two three-phase shift registers is transported to a three-phase, two-element register for delivery to the on-chip preamplifier. If two-phase technology is used, however, it is possible to shift the charge directly into an output diode, which is in turn the input to the on-chip preamplifier. Note that in either case the information-output rate of the device is twice the rate of either of the long shift registers. It is clear from this example that a two-phase charge-coupled structure not only is easier to clock but also is more economical to lay out for a practical device. Even though it is somewhat more difficult to manufacture because of the required asymmetry, it is likely to dominate future designs of charge-coupled devices when fully developed.

A linear image sensor can be made to produce conventional two-dimensional images [see illustration on next page]. The image to be sensed is placed on a

RELATIVE SPECTRAL RESPONSES of a charge-coupled silicon photosensor element (colored curve) and the human eye (black curve) are compared. The semiconductor material absorbs not only visible light (4 to .7 micron) but also near-infrared radiation (7 micron to 1.1 microns). The absorption of such radiation by a silicon substrate results in the generation of electrons in a quantity proportional to the amount of incident radiation. It is this "electro-optic" property that enables charge-coupled devices to be used as image sensors.

rotating drum, which provides the necessary motion of the image with respect to the device. The speed of rotation is synchronized with the vertical scan of the monitor. The charge-coupled linear image sensor provides each horizontal video line for the monitor by a complete sensing and readout operation repeated rapidly to supply all the horizontal lines for a full frame. In many applications the device is the moving element in the system, as in aerial reconnaissance, where the device is located in an airplane or a satellite.

The quality of image reproduction achievable with a linear charge-coupled sensor is excellent, reflecting the large dynamic range of the image sensor [see illustration on page 31]. The dynamic range is the ratio of the maximum to the minimum detectable image intensity. The quality of the reproduction demonstrates the very high transfer efficiencies and low electrical noise levels that can be achieved in existing charge-coupled devices.

Area image sensors are useful primarily for television-type camera applications. The image is obtained by conventional line-by-line scanning of the array mosaic and reproduction of the resulting video signal on a standard raster-scanned cathode-ray-tube monitor. A charge-coupled area image sensor designed for such a readout mode can be designed in a manner analogous to the linear image sensor. As in standard broadcast television, the image is read out in two separate fields by first reading all the evennumbered photosensor elements in each column and then all the odd-numbered photosensor elements in each column rather than by reading the odd and even elements in parallel, as in the case of the linear image sensor.

The area image sensor operates as follows. Light falling continuously on the photosensor sites produces electrons, which accumulate as charge packets in the potential wells created by the photogate voltage. After an interval of a thirtieth of a second the charge packets collected in the photosensors adjacent to all the phase-1 electrodes are transferred to the region under the phase-1 electrodes by raising the phase-1 voltage and lowering the photogate voltage. The charge packets in photosensor sites adjacent to the phase-2 electrodes do not transfer because the phase-2 voltage remains low. After the phase-1 transfer takes place the photogate voltage again goes to its normally high state and more electrons begin to accumulate in the depleted photosensor sites. The charge packets in the opaqued shift register are now transferred to the horizontal shift register at the top of the array. Each vertical transfer fills the horizontal register, which is then read out completely, producing a line of video information at the output. After all these lines are read out (a procedure that takes only a sixtieth of a second) the photosensors adjacent to all the phase-2 electrodes are read out, and in a similar manner this second field is delivered as a video signal at the output. Finally, the entire operation begins again and is completed at regular intervals of a thirtieth of a second.

A typical image sensor designed to operate in this fashion consists of a rectangular 100-by-100 photosensor grid [see illustration on page 22]. Each photosensor element and associated readout electrode occupies only 1.9 square mils. All 10,000 elements fit on a chip that measures .12 by .16 inch. An image taken with a camera system using such a device can be displayed on a television monitor.

This image-sensing device and others made by charge-coupled techniques are still somewhat primitive, but they clearly point the way toward a powerful camera technology. The combination of solid-state reliability, low-voltage operation, low power dissipation, large dynamic range, metric reproducibility and visible and near-infrared response offers to the potential user a compelling advantage over vacuum-tube image sensors.

The charge-coupling concept is basically one of semiconductor electronics rather than one of electro-optics. Because of the electro-optic characteristics of silicon, however, the light-sensing properties of charge-coupled arrays have tended to dominate this new technology. Nonetheless, the data-handling properties of such arrays may be of equal or even greater significance.

A charge-coupled semiconductor array is virtually ideal as a time-sampled analogue shift register. From the viewpoint of the electrical engineer this means a delay line where the delay is proportional to the readin/readout rate; if the array is long enough to contain the complete message, the readin and readout rates can be different and the maximum delay available is limited only by the thermal generation of random electrons. At low temperatures several minutes of delay are possible.

As a memory or digital-storage device, charge-coupled arrays can perform the functions of sequential access or hybrid tasks such as drum or disk storage. The use of solid-state charge-coupled arrays to eliminate all mechanical motion and parts is a strong advantage of a memory consisting of charge-coupled devices.

The intrinsic analogue nature of the charge packet in a charge-coupled device suggests broad potential for application to sampled-signal processing. In a fundamental sense the use of chargecoupled devices as image sensors is merely a special application of the device as an analogue shift register. If one restricts the definition of sampled-signal devices to those with an electrical (rather than an optical) input, then the predominant members of this class are variable delay lines and filters.

A delay line is a circuit that reproduces as accurately as possible an input signal delayed by a finite period of time. A delay line is "variable" if the time delay can be altered electrically. The charge-coupled device acts as a natural delay line since any signal placed on its input diode will appear at its output in sampled form after the interval required for the charge packets to be shifted through all the elements of the structure. The charge-coupled device can be used as a delay line in several ways. First, in the simple continuous mode the delay is equal to the number of unit cells divided by the frequency at which the device is clocked. Alternatively, whenever data appear in bursts, the charge-coupled shift register can be loaded with these data during the burst and the data retained for the desired interval and then read out. In this way the charge-coupled device is said to perform a "buffer" function.

A charge-coupled delay line offers major advantages over the more conventional glass delay line and even significant advantages over the more exotic acoustic-surface-wave devices [see "Acoustic Surface Waves," by Gordon S. Kino and John Shaw; SCIENTIFIC AMER-ICAN, October, 1972]. Among these are wide dynamic range (better than 60 decibels after 30 milliseconds at room temperature) and separate electronic control of propagation velocity and delay time. Delay lines with such flexibility will be of great value in communications and television applications and will simplify existing methods of producing controlled signal delays. One special application of significant interest is a "scanrate converter" often required in video communications. Here the charge-coupled device operates in the buffer mode described above to accept and then read

TWO-DIMENSIONAL IMAGES can be reproduced with the aid of a linear charge-coupled image sensor in a variety of ways, one of which is outlined in this schematic diagram. The image to be sensed is placed on a rotating drum (left) whose speed of rotation is synchronized with the vertical scan of a conventional television display.¹⁷ monitor (*right*). The charge-coupled device and the associated readout circuitry produce horizontal video lines at a rate rapid enough to build up a full-frame image on the sercen of the monitor.

EXCELLENT REPRODUCTION obtained with a 500-element linear charge-coupled image sensor under widely varying light conditions is evident in these photographs. An apparatus similar to the one in the illustration on the opposite page was employed to scan the image. The photograph at left shows the original image to be scanned. The photograph at center shows the video display obtained from the charge-coupled system under optimum lighting conditions (30 foot-candles of illumination). The photograph at right shows the video display obtained from the same system but with the light level reduced 1,000 times; to produce this picture the charge-coupled device had to move packets of approximately 400 electrons each through a centimeter of silicon without dispersion.

out video frames at different rates so as to match practical transmission-system bandwidths with standard television-display requirements.

Éxtension of the simple delay-line concept leads to other sampled-signal processing devices. If a delay line is fabricated with interim taps at which the signal can be sensed and fed back to earlier stages in such a way as to affect the transmission of the data, then this structure can be used as a filter. Such a structure can be conveniently configured as a band-pass filter where the resonant frequency of the circuit is a direct function of the clock frequency. An improvement in the signal-to-noise ratio to within a decibel of the theoretical maximum has already been achieved.

Matched filters find application in wide-spectrum communications and in radar to detect weak signals in high noise backgrounds. In such applications charge-coupled devices will complement acoustic-surface-wave devices, which generally are useful only for delays of less than 100 microseconds.

As mentioned above, a charge-coupled storage element is capable of storing a packet of electrons with a varying amount of charge, depending on the design and operating conditions of the charge-coupled unit cell. Nonetheless, there is no reason one cannot conceptually quantize the charge-handling ability of the cell and view the device as a binary digital element. For example, one can arbitrarily say that if a storage element contains a charge less than half the saturation charge, it contains a "zero," whereas if it possesses a charge greater than half the saturation charge, it contains a "one." In this way the storage element becomes a memory "bit" and a charge-coupled delay line can be made to serve the function of a digital shift register or serially accessible memory. Since this function can be performed by other technologies also, one must ask what charge-coupling has to offer. The answer is cost-effectiveness. A chargecoupled memory not only has all the advantages of a conventional semiconductor component (compatibility with other electronic circuit elements, no mechanical motion, low power and voltage, variable clocking rates and other similar features) but also offers a potentially low cost-per-bit ratio approaching that of a magnetic memory. This is a result of the inherent structural simplicity of the charge-coupled device. By virtue of this simplicity, memory arrays as large as a quarter of a million bits per component on a piece of silicon less than half an inch on a side can be envisioned.

In addition, the power necessary to sustain a charge-coupled memory device is very low since the storage element is not active. The power required to move the charge stored on one charge-coupled element to an adjacent element in a microsecond is approximately a microwatt. Moréover, in a properly organized memory it is not necessary to have all bits moving simultaneously. Thus a onemegahertz, one-megabit charge-coupled memory device would require a power of somewhere between a milliwatt and a watt to sustain it, excluding logic and other functions. The volume required for such a memory is less than that of a pack of cigarettes.

Another advantage lies in the fact that the charge-coupled device is basically analogue in nature. It is thus possible to store more than one data bit in each memory cell. This can be done by storing any one of a number of discrete levels of charge in each cell, thereby greatly increasing the information-packing density. For example, a 100,000-cell device capable of handling eight levels of charge is comparable to a 300,000-bit conventional memory. Such a memory chip would be of great value in digitalto-analogue and analogue-to-digital converters and other applications where multiple levels are achieved only by the addition of vast amounts of memory.

In view of these important prospective features of charge-coupled memory devices it appears that we are at the dawn of a revolution that will ultimately bring today's powerful digital computers directly into our everyday way of life. The charge-coupling concept, in short, is a major new innovation in semiconductor electronics. By virtue of its simplicity in design and fabrication, its high performance in terms of dynamic range and low power, and its high packing density and potentially low cost, the technology of charge-coupling will create major and unique new applications for semiconductors that will have a direct impact on our lives.

R01104 1000₁ Q.E.= 100% LINE-SCAN DEVICES - TYPE II 50% LINE-SCAN DEVICES-TYPE DEVICES 100 R (mA/W) 5% 10 400 600 800 1000 λ (nm) TYPICAL INTERNAL SPECTRAL RESPONSE (UNSMOOTHED) Schlumberge

TECHNICAL NOTE ON X-RAY IMAGING WITH FAIRCHILD CCD IMAGE SENSORS

BY R. H. DYCK JUNE, 1981

X-ray imaging is conventionally done with either photographic film, X-ray phosphor screens viewed directly, or X-ray image converter tubes coupled to a vidicon-type of television camera. Solid state image sensors can provide several advantages over the conventional approaches. For example, by simply replacing the tube-type camera by a solid state camera one achieves the advantages of:

- 1) a distortion-free scanning raster,
- 2) an ultra-stable scanning raster, and
- full digital control of the image readout, as is desirable for interfacing to digital systems

The above example can be implemented in two ways. One way is to use relay optics to image the output of the X-ray image converter tube onto the image sensor. Because sensitivity is generally quite important, the aperture of the lens should be approximately f/1.4 or larger, i.e., a smaller f/no. The other way is to use an image sensor with a fiber optics faceplace and a converter with a fiberoptic backplate. An improvement in sensitivity of 10 to 20 times has been achieved with this approach. In terms of numerical aperture (NA), the aperture of this type of coupling can be approximately 1.0; this is approximately equivalent to f/0.5.

Other approaches to X-ray imaging with solid state image sensors are: (1) to use an X-ray phosphor that is deposited directly on a fiber optics faceplate on the sensor, and (2) to let the X-rays excite the sensor directly. This last method is not recommended, however, since the X-rays incident on an image sensor, especially when it is powered, lead to degradation of the device similar to the way devices degrade due to any other form of high energy radiation such as gamma rays and high energy electrons. The effects include (1) increased dark signal, (2) decreased charge transfer efficiency, and (3) drift in optimum drive voltages. Depending on the particular type of radiation, the dose, the device and the temperature, any one of these effects may dominate.

Where X-ray imaging directly on the sensor is considered, the following information may be of value.

- 1) The attenuation depth in silicon varies strongly with X-ray energy. Above approximately 6 KeV, the characteristic attenuation depth (where the incident X-ray flux is attenuated 2.72 times) is greater than 30 μ m. This situation results in relatively large crosstalk between photoelements, and also in the possibility of poor uniformity of response.
- 2) Continued exposure to X-rays, especially while under power, causes the device to degrade.Near room temperature, this will generally be detectable at 10³ to 10⁴ rads, and may make the device unusable at 10⁵ to 10⁶ rads. Annealling will restore proper performance to some degree, but since the best annealling only occurs at temperatures above the maximum recommended storage temperature, low-risk annealling treatments are not expected to help very much. Annealling assisted by ultraviolet irradiation may be considerably more effective.
- 3) Because good imaging is only expected for relatively low X-ray energies, and because the normal glass window on the image sensor strongly attenuates these low-energy X-rays, it is important to replace the glass window by a thin beryllium cover (of course, for ultraviolet-assisted annealling a beryllium cover would need to be removable).
- 4) Dosimetry. A rad is defined differently in silicon device investigations relative to the conventional definition for biological and health studies. For the latter, the definition is 100 ergs/gram in carbon. For silicon devices, it is 4.2 x 10¹³ electron-hole pairs/cm³ in silicon. Another useful relationship in dealing with radiation effects in silicon devices is that it takes approximately 3.5 eV of energy, on the average for high energy radiation, to create one electron-hole pair in silicon.
- 5) <u>Active area</u>. Because the aluminum that shields the CCD registers from light is transmitting for X-rays, the registers may be stopped during an exposure, and the active area may be considered to include the registers. This situation results in oddly shaped element areas for line-scan imagers unless elements are paired. For paired elements, the resulting active element area is approximately 26 X 260 μm ~0.007 mm².

6) Example of an X-ray exposure and the resulting radiation dose. Assume 10 KeV radiation. Each X-ray photon will generate approximately 3000 photoelectrons. Of these, 2000 will be generated in the first 100 μ m of depth. Assume all 2000 will be collected. Assume an average exposure of 50 X-ray photons per 26 x 260 μ m pixel. This will generate approximately 100,000 photoelectrons or approximately 10% of the saturation output voltage. This exposure expressed in radiometric units, is

 $\frac{(50 \text{ photons})(10^4 \text{ eV/photon})(1.6 \text{ xl}^{-19} \text{ joule/eV})}{7 \text{ xl} 0^{-5} \text{ cm}^2} = \frac{1.1 \text{ xl}^{-9} \text{ j/cm}^2}{1.1 \text{ xl}^{-9} \text{ j/cm}^2}.$

The radiation dose seen by the upper portion of the device can be estimated as follows: assume a characteristic absorption length of 100 μ m. The absorption coefficient is then one percent per micrometer. The excitation density at the top of the device and for the average exposure used in this example is then

 $\frac{(50 \text{ photons})(3000 \text{ pairs/photon})(0.01/\mu\text{m})(10^{4} \mu\text{m/cm})}{(7 \times 10^{-5} \text{ cm}^{2})(4.2 \times 10^{13} \text{ pairs/rad})} = 5.1 \text{ mRad}$

Therefore, if one is careful not to expose the device unnecessarily to the X-ray source, it should be possible to take as many as 200,000 exposures before the significant degradation resulting from 10^3 Rads accumulated dose will occur.

Advanced charge-coupled device (CCD) line imaging devices*

David D. Wen Fairchild Camera & Instrument Corporation 4001 Miranda Avenue Palo Alto, California 94304

Abstract

The design and operation of a new high speed family of CCD line imaging devices are presented in this paper. The devices, CCD 133 and CCD 143, contain 1024 and 2048 photosites on 13 µm centers respectively. They are second generation devices having an overall improved performance compared with the first generation devices (CCD 121 and CCD 131) including higher sensitivity, enhanced blue response and lower dark signal. The devices also incorporate on-chip clock driver circuitry so that only two external clocks are required for their operation. Excellent performance has been obtained with up to 20 MHz data rate. The devices are designed for page scanning applications including high speed facsimile, optical character recognition, and other imaging systems which require high resolution, high sensitivity, and high speed.

Introduction

CCD line imaging devices manufactured by the Fairchild buried n-channel technology were first introduced commercially more than four years ago.¹ A second generation family of line imaging devices has recently been designed to replace them. The low speed second generation devices (CCD 122 and CCD 142), which operate up to 2 MHz data rate, have been described at the 1979 International Solid State Circuit Conference.² This paper reports the operation of the high speed second generation devices (CCD 133 and CCD 143) which are designed to operate up to 20 MHz data rate.

Device design and operation

The CCD 133/143 devices contain a line of 1024/2048 13 μ m x 13 μ m image sensor elements as shown by the block diagram in Figure 1. The photosites are separated by diffused channel stops and covered by a silicon dioxide surface passivation layer. Because there is no polysilicon gate layer over the photosites, the sensitivity is increased, particularly in the blue region of the spectrum. An N⁺ region is diffused into the photosites to collect photogenerated electrons as illustrated in Figure 2. After an integration period is over, the two adjacent (inner) Analog Transport Shift Registers A&B. The transport registers are positioned 70 μ m away from the photosites to that optical crosstalk is minimized. The N⁺ diffusion region, illustrated in Figure 2, also provides conductive coupling between the photosite and the shift register regions. As a result, charge transfer across the 70 μ m distance

The CCD shift registers are constructed with two polysilicon layers with self-aligned ion-implanted barriers. A buried-channel ion implantation is employed so that the CCD shift registers operate in the bulk-channel mode. Excellent charge transfer efficiency can be obtained with this structure at clock frequencies in excess of 30 MHz. One-and-half phase clocking⁴ is employed so that only one external clock (ϕ_T) is required for the shift register operation. A gated-charge integrator output amplifier is provided for each of the two analog transport shift registers, as illustrated in Figure 3. The gated-charge integrator contains two MOS source follower stages with a switching transistor positioned between the two stages so that sampled-and-held output waveforms are obtained. The output impedance of the gated-charge integrators is designed to be 750 ohms in order to drive an external capacitive load (approximately due tc charge packets transferred from the two shift registers, a combined output video data rate of 20 MHz can be obtained. On-chip MOS circuity, illustrated in Figure 4. generates all the required clock waveforms to operate the output amplifiers. The MOS clock drivers are designed with bootstrap feedback capacitors for high frequency operation. The two sample-and-hold clock waveforms (ϕ_{SHA} and ϕ_{SHB}) are each 35 ns in width to assure proper operation at 10 MHz clock rate (20 MHz data rate).

* Manufactured under U. S. Patent 3,931,674. Other patents pending.

In addition to the regular photosites, the devices also contain four dark reference cells at each end of the array as illustrated in Figure 1. These dark reference cells are constructed the same as the regular photosites except that they are kept dark by the covering of opaque aluminum metallization. They provide an accurate dark reference level in the device output waveforms so that external signal processing such as DC restoration can be performed. Figure 1 also shows isolation cells situated between the dark reference cells and the regular photosites. These isolation cells are reverse-biased diodes which are used to eliminate optical crosstalk between the regular photosites and the dark reference cells.

An electrical injection circuit is provided at the beginning of each of the transport shift registers as indicated in Figure 1. A cross-sectional diagram of the electrical injection circuit is shown in Figure 5. It can be seen that the magnitude of the charge injected is determined by the same well and barrier potentials which determine the saturation level of the shift registers. These electrically injected signals (called white reference cells) track the device saturation level with respect to amplifier gain and temperature effects as well as process variations. These charge packets are injected at the end of the exposure period when $\phi_{\rm X}$ is turned HIGH. They are then transported along the readout shift registers and appear at the output amplifiers after the regular photo-generated charge packets. The white and dark reference levels can be used to achieve automatic gain control in many optical system applications.

Figure 5. Electrical injection structures for the white reference level.

As illustrated in Figure 1, a total of four CCD shift registers are provided on the device. The signal charge packets from the photosites are transported along the two inner shift registers. The two outer shift registers are used to collect charge that may be generated in the field so that the signal charge packets are not affected. An electrical injection structure identical to the white reference circuit is also provided for one of the outer shift registers. The teadout of a line of video data has been completed. The use of this end-of-scan (EOS) output eliminates the need for external counter chains.

The devices are designed to operate with only two external clocks (both with 12 volt amplitude). ϕ_T controls the output data rate, and ϕ_X controls the exposure time interval. Due to the fast transfer achieved with the N⁺ diffusion region discussed before, ϕ_T is a continuous clock which does not need to be interrupted during the ϕ_X transfer period. Typical output waveforms of the device are shown in Figure 6. It can be seen that both outputs are sampled-and-held, and contain dark and white reference levels as discussed previously.

Figure 6. Device output waveforms.

ł

Typical device performance characteristics are summarized in Table I. Under the standard test condition of 25° C, 5.0 MHz data rate and 1 ms integration time, the device provides 2 volt saturation output and less than 10 mV of dark signal. Temporal noise measured without illumination is typically 400 µV RMS, resulting in a 5000 : 1 dynamic range. Excellent charge transfer efficiency of better than 0.99999 per transfer is obtained. The device operates with a single 14 volt, 22mA DC power supply. Maximum output video data rate is 20 MHz. Typical spectral response and MTF (modulation transfer function) measurements are shown in Figures 7 and 8. Table 1. CCD 133/143 Typical Performance Characteristics 2.0 V 3.0 V/µJcm⁻² 7.0 mV Saturation output voltage Responsibility Max. dark signal* Photoresponse nonuniformity* 10% + Charge transfer efficiency 0.99999 400 µV RMS 5000 : 1 Temporal noise (in dark) Dynamic range Output impedance Power dissipation **750** Ω 380 mW 20 MHz Max. output data rate * Measured at 25°C, 1 ms integration time, light source is 2854°K + BG 38 + WBHM filters (480 nm to 650 nm wavelength) 10.0 TYPICAL 5.0 RESPONSIVITY V/µJcm-2 2.0 RANGE 1.C 0.5 0.2 0.1 400 600 800 1000 WAVELENGTH-nm Figure 7. Spectral response measurement.

.

Figure 8. MTF measurement.

Conclusion

The design and performance of the CCD 133 and CCD 143 have been discussed in this paper. The devices contain 1024 or 2048 photo-sensing elements on 13 μ m centers. Only one DC power supply and two external clocks are required for their operation. Excellent results have been obtained up to 20 MHz output data rate.

The 1024 sensing elements of the CCD 133 provide 120-line-per-inch resolution across an 8-1/2 inch page, the 2048 sensing elements of the CCD 143 provide an 8-line-per-millimeter resolution across a 256 millimeter page for standard Japanese facsimile use. The devices should find applications in facsimile, optical character recognition and other imaging systems where high resolution, high sensitivity and high speed are desired.

Acknowledgments

The author wishes to thank Will Steffe for many helpful discussions, Sampath Ranganathan for on-chip MOS circuit design, and Richard Youden and Denice Denton for device characterization.

References

 Kim, C. K., "Two-Phase Charge Coupled Linear Imaging Devices With Self-Aligned Barrier", IEDM, Tech. Digest, pp.55-58, 1974.
 Steffe, W. C. and Wen, D. D., "Second Generation CCD Line Imaging Devices", ISSCC Tech. Digest, 1979.

 Krambeck, R. H., Strain, R. J., Smith, G. W., and Pickar, K. A., "Conductively Connected Charge Coupled Device", IEEE Trans. on Electron Devices, ED 21, pp.70-72. 1974.
 Wen, D. D., "A CCD Video Delay Line", ISSCC Tech. Digest, 1976.

A SOLID STATE (CCD) COCKPIT TELEVISION SYSTEM

MICHAEL VICARS-HARRIS

ABSTRACT

The Cockpit Television Sensor (CTVS) System provides a monochrome video tape record of aircraft displays and instruments, such as the Head Up Display (HUD) gunsight, radar display, etc., and in addition records cockpit audio data. When used with the HUD, the recording shows the outside world scene as viewed by the pilot together with the HUD symbols. Two displays, such as HUD and radar, can be simultaneously recorded on a single tape using a CTVS split-screen mode. This paper describes performance characteristics and capabilities of the system, which is centered around a small versatile highly reliable solid state Charge Coupled Device (CCD) TV camera, which has already been flight proven on the F16, F15, F14 and F4, and qualified to full military specification for flight equipment. (Appendix A provides tabulated summaries of environmental levels.)

The sensor head for the CTVS has a volume under 100 cubic centimeters, about the same volume as a cigarette pack, and includes an f/2.8 auto-iris lens having a 5,000 to 1 dynamic range, providing automatic hands off dawn to dusk operation.

INTRODUCTION

Traditionally, tactical fighter aircraft have been equipped with film cameras to record gunsight/HUD images for both training and combat missions. The Cockpit Television Sensor (CTVS) system fulfills a similar function with the added feature of recording cockpit audio together with the video and offering the option of real time display in the rear cockpit. In addition, the use of an Airborne Video Cassette Tape Recorder (AVTR) extends the recording capability to 30 minutes, and the use of a split screen converter permits two video sources to be simultaneously recorded on the same video cassette, i.e., HUD and radar, or HUD and EO weapon display. For post-flight playback immediately after landing, a standard 3/4" U-matic video cassette tape machine and TV monitor are used. This same equipment is used for split screen playback, which requires no additional special purpose components. The reason for this is that "split screen" is recorded as a single EIA RS170 compatible frame, with only one half of the monitor display used for each camera recording, so that the two camera pictures appear side by side on the same screen. Each camera picture must be compressed horizontally, in order that both pictures can be viewed on a single screen. The use of slow motion, and stopaction, playback on the VTR permits side by side comparisons of the two images on a frame by frame basis with no additional special equipment.

SYSTEM DESCRIPTION

A simplified CTVS block diagram is shown in Figure 1 together with a photograph in Figure 2. The airborne system assemblies comprise the CCD television camera, the Airborne Video Cassette Tape Recorder (AVTR) and the AVTR Remote Control Unit. The TV camera is made up of two separable subasemblies. These are the Video Sensor Head (VSH) and the Electronics Unit (EU). The VSH contains the CCD sensor module, auto-iris lens and interface electronics, including line drivers, which allow the VSH to operate over a maximum of 7 meters of cabling to the EU. The EU assembly contains the clock generator, control logic, video processing, built-in-test (BIT) circuits, BIT switches and indicators and the power supply.

FIGURE 1. CTVS BLOCK DIAGRAM

In aircraft which have provision for the KB26 series of film gun cameras, the CTVS camera can be installed as a single assembly in the same location previously occupied by the KB26 camera. In these aircraft (such as the F16, A10, etc.) the VSH is plugged directly into the EU, and the complete camera is installed as a single assembly using the same configuration as the KB26. Figure 3 shows the CTVS camera in this mode, and Figure 2 shows the camera used as a split assembly together with the remaining components of the airborne system. The split mode of operation is used on aircraft such as the F15 and F14 where there is no existing provision for a HUD camera. In these cases, the small size of the VSH, (see Figure 6) makes it practical to mount it on the sun shield, directly in front of the HUD combining glass, with minimum obscuration of the pilots field-of-view. The maximum obscuration of 23mm due to the CCD sensor-lens, which is centrally located in the pilots field-of-view, has been demonstrated to have no impact on pilot performance.

The composite video output from the CTVS camera is wired directly to the AVTR input (see Figure 1) with a maximum cable length of 150 meters. In most installations, camera power comes on with aircraft power, and the camera is continuously operating during flight, eliminating the need for the addition of cockpit switches and indicators. This simplification is practical because of the demonstrated reliability of the camera. Video from the camera can be recorded by switching the AVTR control box switch from Stand-by to Record. The AVTR control box typically has a three position control switch. These positions are Power-Off, Stand-by and Record. In the Stand-by mode, the AVTR cassette is fully threaded or "loaded" and recording can be started instantaneously by closing the Record switch. In the Power-Off position, the cassette is unthreaded, as when installing or removing the cassette. It takes approximately five seconds to complete the tape threading cycle when going from Power-Off to Stand-by.

FIGURE 3. COCKPIT TV SENSOR - F16 CONFIGURATION (EU & VSH COMBINED)

An expanded system configuration which uses two cameras is shown in the block diagram of Figure 4 and the photograph of Figure 5. In order to record two video inputs to the AVTR, a Split Screen Control Unit must be added to the system, between the outputs of the 2 Cameras and the AVTR. If the two sources of video are CTVS cameras, the Split Screen Control Unit routes a gen-lock signal from camera #1 to camera #2 so that the two camera video signals are synchronized. Each picture occupies only one half of the TV monitor display, camera #1 appearing on the left half of the screen and camera #2 on the right half. The resulting picture from each camera suffers some loss of resolution horizontally, primarily because of attenuation in the AVTR which has negligible response above 4 MHz. In addition, since the picture in each half of the display is compressed by 2 to 1, symbols and scenes will appear correspondingly compressed. Many CCTV displays have sufficient adjustment range using the "picture height" control to permit full compensation.

When only one CTVS camera is in use, and the second source of video is a radar display or EO weapon display, an expanded capability split screen control unit permits similar recording and display as described above for two CTVS cameras.

A separate video output is also available from each camera for real time display on a monitor in the rear cockpit of two seat aircraft. (See Figure 4, which includes an airborne TV monitor as part of the system.)

CTVS CAMERA DETAILS

A summary of performance parameters is given in Table 1, and outline dimensions in Figure 6. The versatility of the camera resides largely in the unique VSH design. This contains the CCD detector and a miniature auto-iris lens, which is coupled via a flexible printed harness to a small electronics assembly in the pedestal. The VSH electronics are necessary to drive up to seven meters of cable to a potentially remotely located Electronics Unit assembly containing power supplies, logic and video processors. The VSH assembly is shown in Figure 7. This view of the VSH illustrates the flexible coupling between the CCD-lens assembly and the pedestal electronics. This flexible coupling allows the height and line of sight of the CCD-lens assembly to be adapted to most practical situations by simply changing the hollow stem which holds the CCD-lens to the pedestal. Three typical configurations of the VSH, having different stem heights, are illustrated in Figure 8. The lens is a custom auto-iris design, 30mm long and 22mm in diameter, including a high speed auto-iris drive torquer, in the form of a toroid with an outside diameter of 20mm, which is integral with the lens elements. The focal length of 31mm provides a camera field-of-view of 16° vertically and 20° horizontally. This field-of-view has been selected by the USAF as an optimum compromise for most HUD

SPECIFICATIONS COCKPIT TELEVISION SENSOR		
GENERAL SENSOR SPECTRAL RESPONSE LENS SENSITIVITY ALC DYNAMIC RANGE GEOMETRY FRAME RATE LINE RATE FORMAT SYNC VIDEO LINE OUTPUT POWER SOURCE WEIGHT REMOTE SENSOR HEAD	 Fairchild CCD Array (488 lines X 380 pixels/line) 450 to 1060 nanometers (without filters) Custom 31mm f/2.8 Auto-Iris ("C" mount option) Scene luminance 5 ft. Lamberts with S/N of 20 dB Greater than 5,000:1 (response time less than one second) No distortion 30 frames/sec. 15,750 lines/sec. 488 lines, 380 picture elements/line 2:1 standard interlace 150 Meters, 75 Ohm 115V, 400 Hz, 3φ (or 28V DC option), 20 watts 1.1 Kilograms Variable Sensor Height and Angle 	
VIDEO 1 VIDEO 2 VERTICAL SYNC OUT VERTICAL SYNC OUT HORIZONTAL SYNC OUT GEN-LOCK – INPUT EVENT MARK – INPUT SPLIT SCREEN – INPUT	1V to 3V p-p, composite video (RS170 compatible) 1V to 3V p-p, composite video (RS170 compatible) Differential TTL Differential TTL RS170 Comp. Sync 2V p-p 28V DC (unregulated) ±4V DC TTL Logic Low	

TABLE 1

e

FIGURE 7. CTVS VIDEO SENSOR HEAD – SHOWING FLEXIBLE COUPLING BETWEEN CCD-LENS AND PEDESTAL WITH MECHANICAL STEM REMOVED

applications, where the field of view ideally should be narrow in order to record targets at maximum range yet wide enough to include all pertinent HUD symbols. A "black-spot" auto-iris extends the range of the f/2.8 lens to an equivalent minimum aperture ratio of f/256.

Camera operation can be tested by the built-in-test (BIT) circuits by depressing the BIT switch. The BIT circuits perform a dynamic end-to-end test of the camera from auto-iris lens to video out, starting with a pulsing light emitting diode illuminating the CCD sensor and proceeding through the video processor and sync circuits to a BIT comparator. A green "go" light indicates correct operation and a yellow "no-go" indicates a malfunction.

Two independent 75 Ohm video outputs are available from the camera. Each video is independently adjustable over the range 1V to 3V peak-to-peak. This permits the camera to be easily operated with a rear seat cockpit display, for instance, without the complication of a double termination on the 75 Ohm video line to the AVTR. In addition, some systems, such as the F16B rear cockpit display, require independent vertical and horizontal sync signals. These are also supplied by the CTVS.

In order to identify key frames or events, an "event mark" is generated by the camera, as a black rectangle in the top left hand corner of the picture, simultaneously with the application of a 28V DC signal to the event mark input pin. Typically, this is used to indicate the second gun trigger detent, or a weapon release.

Other features of the CTVS camera include a theoretical MTBF close to 5,000 hours, no scheduled maintenance or periodic adjustments, (other than to keep the lens clean!). Additionally, the CCD sensor is impervious to damage from sun, if the camera is pointed directly into the sun, without recourse to any special safety shutters or circuits.

The CCD sensor spectral response extends from 450 nanometers to beyond 1060 nanometers. However, for HUD recording applications, carefully selected filters are critical for optimum performance. This is because most HUD displays are green, with a narrow peak in the response curve at around 550 nanometers. Typically, the pilot can discern the HUD symbols against a much brighter background because of color discrimination. The monochrome CTVS camera, however, may not reproduce the scene with sufficient contrast for the HUD symbols to be visible, since the bright background may

wash out the relatively much lower intensity HUD. Therefore, in most HUD applications, a combination of infrared blocking and green pass filters is used. The result of the latter is that overall camera sensitivity is traded off for selectivity. Some HUD displays have both green and orange, or even red, symbols or reticles, and these cases must be treated individually. In all cases, the CTVS has provision for the addition of filters, and lens hood, which screw directly into the CTVS lens barrel.

AIRBORNE VIDEO-CASSETTE TAPE RECORDER

Table 2 provides a summary of key performance specifications of the AVTR, and Figure 9 shows the mechanical outline. The tape recorder uses the standard 3/4 inch U-Matic video-cassette, for easy loading and unloading in the aircraft. The maximum

TEAC V-1000AB-R		
AIRBORNE VIDEO-CASSETTE RECORDER (Record Only)		
SPECIFICATIONS		
GENERAL		
Recording Systems Maximum Recording Time: Tape Format: Power Source: Power Consumption: Dimensions:	Rotary two-head helical scan system 30 Minutes U-Matic ''S'' standard cassette (3/4 inch) 28V DC aircraft power (MIL-STD-704 B) 30 Watts 15.2cm (h) X 33cm (d) X 24.4cm (w), excluding the	
Weight:	10.4 kilograms	
VIDEO		
Signal System: Bandwidth:	EIA b/w standard. (525 lines/frame, 60 fields/sec.) 3.5 MHz -4.0 dB when referenced to the response at 1 MHz	
S/N Ratio: Resolution: Linearity: Input: Output:	More than 40 dB More than 340 lines 10 gray scales minimum 1V p-p +2.0, -0.5: 75 Ohms unbalanced. AGC. E to E at 1.0V p-p, 75 Ohms.	
AUDIO		
Number of channels: Input: Bandwidth:	2 0.5V p-p nominal, 0.1 to 10V p-p with AGC. Selectable input impedance. 80 Hz to 15,000 Hz ±3 dB	
S/N Hatio: Distortion: Event Mark:	More than 40 dB Less than 2.5% 1,000 Hz tone on audio track #1.	

TABLE 2

٠

recording time is currently 30 minutes, with automatic rewind at the end of tape. Although longer running tapes are available from some manufactures, these are not yet recommended for airborne use.

The recorder can be mounted in any vertical axis, or horizontally, using shock isolator mounts, but installation upside down is not recommended.

In addition to the video recording, two independent audio channels are available for direct recording of cockpit audio, and for tone cuing such as for an event mark.

Typically, the AVTR Control Unit is switched to stand-by immediately prior to flight or shortly after take off. In this mode, the recording heads are rotating at full recording speed, and the video tape has been automatically loaded and wrapped around the recording head. This permits the AVTR to be instantaneously switched to the "Record" mode with no delay or start up time. However, it is not ideal to operate in this mode indefinitely, without recording, since the tape heads are in continuous contact with the tape and this can eventually lead to clogging up the recording head, or to tape damage, or both. When the AVTR control switch is turned to OFF, the tape cassette automatically unwinds from the capstan and recording head, and is then ready for manual removal at the end of flight. If aircraft power (28V DC) is removed prior to switching to the OFF position, the tape will remain loaded and it will not be possible to remove the cassette.

SPLIT SCREEN CONTROL UNIT

The split screen control unit is required where the video outputs from two cameras are to be simultaneously recorded on one video tape. Key specifications are given in Table 3. The control unit is designed so that either Camera #1 or Camera #2 can be selected and recorded normally, or both camera outputs can be combined, as described previously.

The simplest configuration for the split screen control unit is if both video sources are CTVS CCD cameras, since the latter have a built-in capability for split screen operation by application of a logic signal to the camera split screen control signal input pin, which is in the aircraft interface connector.

For systems where one signal source is a CTVS CCD camera and the second is another camera (EO weapon) or radar display, the split screen unit capability can be expanded to modify and process the second camera, provided that the video is in EIA RS170 format.

The full video (i.e., full camera field-of-view) of both cameras is recorded in all cases. This was found to be preferable to cropping portions of each image in order to combine them, in spite of the penalty of horizontal distortion, since in most cases valuable information is lost from cropping.

SPLIT SCREEN CONTROL UNIT - SPECIFICATION SUMMARY		
Video Inputs:	Input 1 – CTVS Input 2 – Other RS170 Source	
Video Output:	RS170 with left/right split, CTVS on left, RS170 source on right, reproduction 100% of both sources	
Output Format Modes:	1. Left/right split 2. Input (CTVS) – Full Screen 3. Input 2 – Full Screen	
Power:	115V, 400 Hz, 3 Phase or 28V DC	
Size: Weight:	6.35cm X 7.6cm X 15.24cm Less than 1 Kilogram	

TABLE 3

a.

SUPPORT EQUIPMENT

The CTVS Functional Test Set shown in Figure 10 is used for intermediate level testing of the CTVS. It has been designed for functional testing of the complete CTVS camera, or the VSH alone. A light box and collimator, shown along side the test console, is used for focusing the CTVS, and includes test targets with variable brightness up to 500 ft. candles.

SUMMARY

The Cockpit Television Sensor System is a versatile and rugged one which can expand the effectiveness of operational and training missions by providing instant post flight evaluation, plus the option of a real time display for two seat aircraft. The very small size of the Video Sensor Head, and its versatile construction, make it a candidate for many applications in addition to recording the HUD. The addition of a split screen control unit effectively doubles the capability of the AVTR with a modest trade off in horizontal resolution. The CTVS camera and AVTR have been flight tested, and are currently in use, on a variety of USAF and USN aircraft.

ACKNOWLEDGEMENT

The final development of the CTVS camera was accomplished under contract number F33657-78-C-0484 from ASD, Wright Patterson Air Force Base, and contributions by many people at ASD are gratefully acknowledged. Credit for the initial concept and early development of the CTVS which was called the Electronic Gunsight Camera in 1976, must be shared with members of Tactical Air Command and the Air Force Avionics Laboratory without whom the development of this system might never have been initiated.

REFERENCES:

- Bashe, R. and Balopole, H.L., "Electronic Gunsight Camera" Air-to-Air Fire Control Review, AF Academy, Colorado, October 1976.
- Hoagland, K.A. and Balopole, H.L. "CCD TV Cameras, Utilizing Interline-Transfer Area Image Sensors", Proc of the 1975 International Symposium on the applications of CCD, San Diego, Cal., October 1975.

ζ,

•

.

康

٠

y

Fairchild Sales Offices — United States

ALABAMA Huntsville (205) 837-8960

ARIZONA

Phoenix (602) 864-1000

CALIFORNIA

Encino (213) 990-9800

Santa Ana (714) 557-7350

Santa Clara (408) 987-9540 San Diego

(714) 560-1332

COLORADO Denver

(303) 758-7924

CONNECTICUT

Danbury (205) 634-8720

FLORIDA

Altamonte Springs (305) 834-7000

Ft. Lauderdale (305) 485-5677

AUSTRALIA

Fairchild Australia Pty. Ltd. Victoria 3/8775444

AUSTRIA AND EASTERN EUROPE

Fairchild Electronics Schwedenplatz 0222/635821

CANADA

Fairchild Semiconductor Ottawa (613) 226-8270 Toronto (416) 625-7070

FRANCE

Fairchild Camera and Instrument S.A. Paris 1/584-5566 GEORGIA Atlanta (404) 441-2730

ILLINOIS Itasca (312) 773-3300

INDIANA Indianapolis (317) 849-5412

IOWA

Cedar Rapids (319) 395-0090

KANSAS Overland Park (913) 649-3974

MARYLAND Columbia

(301) 730-1510

MASSACHUSETTS Framingham

(617) 872-4900

MICHIGAN Farmington Hills (313) 478-7400 MINNESOTA Edina

(612) 835-3322 NEW JERSEY

Wayne (201) 256-9006

NEW MEXICO

Albuquerque (505) 884-5601

NEW YORK

(716) 223-7700

Hauppauge (516) 348-0900 Poughkeepsie

(914) 452-4200 NORTH CAROLINA

Raleigh (919) 876-9643

OHIO Cleveland (614) 459-5748 Dayton (513) 278-8278 OKLAHOMA Tulsa (918) 627-1591

OREGON Beaverton (503) 641-7871

PENNSYLVANIA

Willow Grove (215) 657-2711

TENNESSEE

Knoxville (615) 691-4011

TEXAS Austin (512) 837-8931

Houston (713) 771-3547 Richardson

(214) 234-3391

Fairchild Sales Offices — International

GERMANY

Fairchild Camera and Instrument (Deutschland) Munich 89/32003/237

HONG KONG Fairchild Semiconductor (HK) Ltd. Kowloon 3/890271 and 440233

ITALY Fairchild Semiconduttori, S.P.A. Roma 6/328-7548 or 2717 Milano 2/296001 and 23677415 JAPAN Fairchild Ja

Fairchild Japan Corporation Tokyo 03/400-8351

MEXICO Fairchild Mexicana, S.A. Mexico City 905-563-5411

SCANDINAVIA

Fairchild Semiconductor AB Stockholm, Sweden 8/449255

SINGAPORE

Fairchild Semiconductor Pty. Ltd. Toa Payoh Singapore 253/1066

TAIWAN

Fairchild Semiconductor (Taiwan) Ltd. Taipei -2/5973205-8

BENELUX

Fairchild Semiconductor Eindhoven, Holland 40/446909

UNITED KINGDOM

Fairchild Camera and Instrument (UK) Ltd. Semiconductor Division Potters Bar Hertfordshire England 272/292631-2

A Schlumberger Company

3440 Hillview Avenue, Palo Alto, CA 94304 Phone (415) 493-8001 — TWX 910-373-1227 Cable Address: FAIRSEMCO